Catechol-functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials

Ji Hyun Ryu¹, Yuhan Lee², Won Ho Kong², Taek Gyoung Kim², Tae Gwan Park¹,²* and Haeshin Lee¹,³*

¹Graduate School of Nanoscience and Technology (WCU),
²Department of Biological Sciences,
³Molecular-level Interface Research Center, Department of Chemistry,

Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.

*To whom Correspondence should be addressed.

Prof. H. Lee, Tel: +82-48-350-2849, Fax: +82-42-350-2810, E-mail: haeshin@kaist.ac.kr

Prof. T. G. Park, Tel: +82-48-350-2621, Fax: +82-42-350-2610

The authors express their sincere condolences to family on the death (April 10th, 2011) of Prof. Tae Gwan Park
Figure S1. 1H NMR spectra of A) CHI-C and B) Plu-SH. The insets showed the conjugation schemes and resulting chemical structures of A) CHI-C and B) Plu-SH.
Figure S2. UV-Vis spectroscopic studies of CHI-C/Plu-SH hydrogels. A) UV-Vis spectra changes of CHI-C/Plu-SH hydrogels with different incubation time (0, 1, 3, and 6 h) and with extended period incubation for 3 days at 37 °C. B) The change in A_{324} as a function of time.
Figure S3. The rheological assessment of elastic modulus value difference between 0.5 wt% CHI-C/12 wt% Pluronic F127 and 0.5 wt% CHI-C/12 wt% Plu-SH at 37 °C.
Figure S4. The photographic images of 12 wt% Plu-SH alone at RT and 37 °C.
Figure S5. Temperature-responsive changes in elastic modulus of CHI-C/Plu-SH hydrogels with varying incubation time (0, 15, 30 min, 1, 3, and 6 h) after mixing at 37 °C. After 3 h, there are no significant changes in elastic modulus as temperature was increased, indicating the chemical cross-linking between CHI-C and Plu-SH, which showed no temperature responsiveness.