Highly Efficient, Organocatalytic Aerobic Alcohol Oxidation

Masatoshi Shibuya, Yuji Osada, Yusuke Sasano, Masaki Tomizawa and Yoshiharu Iwabuchi*

Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama 6-3, Sendai 980-8578, Japan

General experimental procedures	S1
Synthesis of 5-F-AZADO	S2
Synthesis of 1-F-AZADO	S4
Synthesis of 5-F-1-Me-AZADO	S6
Synthesis of 5,7-diF-1-Me-AZADO	S9
Synthesis of 5-OH-1-Me-AZADO	S11
Synthesis of 5-MeO-1-Me-AZADO	S12
Preparation of 5-F-AZADO ⁺ NO ₃	S13
Representative procedure of aerobic oxidation	S14
Selected examples of aerobic oxidation	S14
0.1-mol-scale oxidation of 1,2:4,5-di- ${\it O}$ -isopropylidene- ${\it B}$ -D-fructopyranose (22a)	S16
Characterization of 19b, 23b, 25b	S17
The effect of AcOH	S19
Recycling of 5-F-AZADO NO3	S20
Reactivities of substituted TEMPO	S21
CV experiments	S22
Preparation of oxoammonium chlorides	S25
Reference and Notes	S26
The data of DFC analysis	S27
¹ H and ¹³ C NMR spectra	S28

General experimental procedures:

All reactions were carried out under an atmosphere of argon unless otherwise specified. Ethereal solvents and dichloromethane (anhydrous; KANTO CHEMICAL CO., INC.) were used as received. All other solvents were dried and distilled by standard procedures. Yields refer to chromatographically and spectroscopically (¹H-NMR) homogeneous materials unless otherwise stated. Reagents were purchased from commercial suppliers and used without further purification unless otherwise stated.

Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F₂₅₄) using UV light as visualizing agent and *p*-anisaldehyde in ethanol/aqueous H₂SO₄/CH₃COOH for straining. Column chromatography was performed with Silica Gel 60N (spherical, particle size 0.063-0.210 mm, neutral, KANTO CHEMICAL CO., INC.) or Silica Gel 60N (spherical, particle size 0.040-0.050 mm, neutral, KANTO CHEMICAL CO., INC.). The eluents employed are reported as volume: volume percentages.

Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded using a JEOL JNM-AL400 (400 MHz), and a JEOL ECA-600 (600 MHz) spectrometers. Chemical shift (δ) is reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS). Coupling constants (*J*) are reported in Hz. Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Carbon-13 nuclear magnetic resonance (¹³C-NMR) spectra were recorded using a JEOL JNM-AL400 (100 MHz) and a JEOL ECA-600 (150 MHz) spectrometers. Chemical shift is reported in ppm relative to the center line of the triplet of CDCl₃.

Melting points were determined using Yazawa BY-2 melting point apparatus and are reported uncorrected. In parentheses after melting point, the recrystallization solvents are shown. Infrared spectra were obtained on a JASCO FT-IR-410 at 4.0 cm⁻¹ resolution and are reported in wavenumbers. High resolution mass spectra (HRMS) were recorded on a JEOL JMS-700 using electron impact (EI). Low resolution mass spectra (MS) were recorded on a JEOL JMS-DX303. Elemental analyses were performed using Yanaco CHN CORDER MT-6.

Synthesis of 5-F-AZADO (9)

Scheme S1. Synthesis of 5-F-AZADO (9)

N-Trifluoroacetyl-2-azaadamantane (S2)

To a solution of 2-azaadamantane **S1**¹ (4.0 g, 29.1 mmol) in CH₂Cl₂ (0.2 M, 150 mL), Et₃N (6.1 mL, 43.7 mmol), TFAA (6.1 mL, 43.7 mmol) was added at 0 °C. After the mixture was stirred for 2 hr at ambient temperature, sat.NaHCO₃ was poured and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude amide was purified with column chromatography (AcOEt – Hexane =1 : 8) to afford amide **S2** (6.8 g, 29.1 mmol, 100%) as a colorless oil.

¹H-NMR (400 MHz, CDCl₃): δ 4.76 (br s, 1H), 4.23 (br s, 1H), 2.14 (br s, 2H), 1.83-1.91 (m, 10H). ¹³C-NMR (100 MHz, CDCl₃): δ 154.1 (q, J = 35.3 Hz), 116.8 (q, J = 288.4 Hz), 49.7 (q, J = 3.3 Hz), 46.2, 36.1, 35.2, 35.1, 26.2. IR (neat, cm⁻¹): 1685. MS m/z: 233 (M⁺), 233 (100%). HRMS (EI): Calcd. for C₁₁H₁₄F₃NO: 233.1027, found: 233.1023.

N-Trifluoroacetyl-5-hydroxy-2-azaadamantane (S4)

To a solution of amide **S2** (500 mg $\[Gamma]$ 2.14 mmol) in CCl₄ – MeCN – H₂O (1.65 M, 1.3 mL – 1.1 M, 1.9 mL – 1.1 M, 1.9 mL), NaIO₄ (1.05 g $\[Gamma]$ 4.90 mmol), RuCl₃·nH₂O (44 mg $\[Gamma]$ 0.214 mmol) was added at ambient temperature. After the reaction mixture was vigorously stirred for 20 hr at 70 °C, sat. NaHCO₃ and sat. Na₂S₂O₃ was poured and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude 5-hydroxy-amide was purified with column chromatography (AcOEt – Hexane = 1 : 2) to afford 5-hydroxy-amide **S3** (341 mg, 1.37 mmol, 64%, 80% brsm) as a white solid accompanied with recovered amide **S2** (100 mg). mp 95-96 °C (CHCl₃-Et₂O). ¹H-NMR (400 MHz, CDCl₃): δ 4.97 (br s, 1H), 4.43 (br s, 1H), 2.40 (br s, 1H), 1.89-1.73 (m, 10H). ¹³C-NMR (100 MHz, CDCl₃): δ 154.0 (q, J = 35.3 Hz), 116.5 (q, J = 288.3 Hz), 66.6, 51.5 (q, J = 3.6 Hz), 48.3, 43.6, 43.1, 42.9, 34.9, 34.0, 28.8. IR (neat, cm⁻¹): 3425, 1681. MS m/z: 249 (M $\[Gamma]$) 249 (100%). HRMS (EI): Calcd. for C₁₁H₁₄F₃NO₂: 249.0977, found: 249.0956. Anal.: Calcd. for C₁₁H₁₄F₃NO₂: C, 53.01; H, 5.66; N, 5.62, found: C, 52.88; H, 5.66; N, 5.62.

5-Fluoro-N-trifluoroacetyl-2-azaadamantane (S4)

To a solution of 5-hydroxy-amide **S4** (2.77 g, 11.1 mmol) in CH_2Cl_2 (0.6 M, 18.5 mL), DAST (2.9 mL, 22.2 mmol) was added at -78 °C. After the reaction mixture was stirred for 1 hr at 0 °C, the mixture was diluted with Et_2O then quenched with H_2O . The mixture was extracted with AcOEt. The organic layer was washed with brine and dried over MgSO₄ and evaporated. The crude 5-fluoro-amide was purified with column chromatography (AcOEt – Hexane =1 : 4) to afford 5-fluoro-amide **S4** (2.30 g, 8.98 mmol, 81%) as a white solid.

mp 52 °C (Hexane). ¹H-NMR (600 MHz, CDCl₃): δ 5.02 (br. s, 1H), 4.48 (br s, 1H), 2.47 (br d, J = 1.8 Hz, 2H), 2.06-1.94 (m, 6H), 1.81-1.77 (m, 2H), 1.73-1.67 (m, 2H). ¹³C-NMR (150 MHz, CDCl₃): δ 154.1 (q, J = 35.6 Hz), 116.6 (q, J = 289.7 Hz), 89.9 (d, J = 187.9 Hz), 52.0 (m), 48.8 (d, J = 11.5 Hz), 41.4 (d, J = 20.1 Hz), 40.7 (d, J = 17.2 Hz), 40.7 (d, J = 18.6 Hz), 34.7, 33.8, 29.6 (d, J = 10.1 Hz). IR (neat, cm⁻¹): 1681, 1232, 1179, 1132, 1064. MS m/z: 251 (M⁺), 251 (100%). HRMS (EI): Calcd. for C₁₁H₁₃F₄NO: 251.0933, found: 251.0919. Anal.: Calcd. for C₁₁H₁₃F₄NO: C, 52.43; H, 5.22; N, 5.58, found: C, 52.59; H, 5.22; N, 5.58.

5-Fluoro-2-azaadamantane N-oxyl (9)

To a solution of 5-fluoro-amide S4 (2.3 g, 8.98 mmol) in EtOH (54 mL), *aq*. NaOH (10% ≠ 27 mL) was added at ambient temperature. After the reaction mixture was stirred for 2 hr, the mixture was diluted with H₂O and extracted with CHCl₃. The organic layer was dried over K₂CO₃ and evaporated. The crude amine was used without further purification. After a solution of the crude amine and Na₂WO₄·2H₂O (1.5 g, 4.5 mmol) in MeOH (0.5 M, 18 mL) was stirred at ambient temperature for 30 min, UHP (3.4 g, 35.9 mmol) was added. After 1 hr, additional UHP (0.84 g, 8.98 mmol) was added and the mixture was stirred for another 5 hr. The mixture was diluted with sat. NaHCO₃ and the solvent was removed under reduced pressure. H₂O was added to the residue and the mixture was extracted with CHCl₃. The organic layer was dried over K₂CO₃ and evaporated and purified with column chromatography (Et₂O − Hexane = 2 : 1) to afford 5-F-AZADO (9, 1.2 g, 7.05 mmol, 79% for 2 steps) as a yellow solid.

mp 115 °C (CHCl₃-Et₂O). IR (neat, cm⁻¹): 1442, 1347, 1282. MS m/z: 170 (M⁺), 170 (100%). HRMS (EI): Calcd. for C₉H₁₃FNO: 170.0981, found: 170.0965. Anal.: Calcd. for C₉H₁₅FNO: C, 63.51; H, 7.70; N, 8.23, found: C, 63.32; H, 7.62; N, 8.13.

Synthesis of 1-F-AZADO (8)

Scheme S2. Synthesis of 1-F-AZADO (8)

N-Benzyloxycarbonyl-1-fluoro-2-azaadamantane (S6)

To a solution of carbamate $S5^2$ (227 mg \leftarrow 0.79 mmol) in CH₂Cl₂ (1.43 M \leftarrow 0.55 mL), DAST (0.32 mL, 2.37 mmol) was added at -78 °C. After the reaction mixture was stirred for 1 hr at 0 °C, the mixture was diluted with Et₂O and quenched with H₂O. The mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude carbamate was purified with column chromatography (AcOEt – Hexane =1 : 4) to afford carbamate S6 (211 mg, 0.729 mmol, 92%) as a yellow oil.

¹H-NMR (600 MHz, CDCl₃): δ 7.37-7.36 (m, 2H), 7.34-7.31 (m, 2H), 7.28-7.26 (m, 1H), 5.19 (s, 2H), 4.62 (m, 1H), 2.32 (br d, J = 2.5 Hz, 2H), 2.13-2.10\sqrt{m}, 2H\sqrt{n}, 1.92-1.88 (m, 2H), 1.79-1.69 (m, 4H), 1.61-1.58 (m, 2H). ¹³C-NMR (150 MHz, CDCl₃): δ 155.8 (d, J = 2.9 Hz), 136.8, 128.4, 127.7, 127.6, 100.0 (d, J = 218.0 Hz), 66.9, 53.7, 41.0 (d, J = 20.1 Hz), 34.2, 29.9 (d, J = 10.1 Hz). IR (neat, cm⁻¹): 1720, 1687, 1392. MS m/z: 289 (M⁺), 91 (100%). HRMS (EI): Calcd. for C₁₇H₂₀FNO₂: 289.1478, found: 289.1465.

1-Fluoro-2-azaadamantane N-oxyl (8)

To a solution of carbamate S6 (155 mg 4 0.535 mmol) in MeOH (6 mL, 0.1 M), 10% Pd-C (16 mg) was added under Ar atmosphere. After the reaction flask was purged with H₂ three times, the reaction mixture was stirred at ambient temperature for 2 hr under hydrogen atmosphere. After the reaction flask was purged with Ar atmosphere, the reaction mixture was filtered through Celite[®]. The filtrate was concentrated under reduced pressure. The residue was diluted with CHCl₃ and the solution was washed with sat. Na₂CO₃, dried over K₂CO₃ and evaporated. The crude product was used without further purified. A solution of the crude product and Na₂WO₄·2H₂O (74.3 mg, 0.225 mmol) in MeOH (0.5 M, 0.9 mL) was stirred at ambient temperature for 30 min. UHP (169 mg, 1.8 mmol) was added to the mixture at 0 °C. After the mixture was stirred at ambient temperature for 3 hr, it was diluted with sat. NaHCO₃ and the solvent was removed under reduced pressure. H₂O and was added to the residue and the mixture was extracted with CHCl₃. The organic layer was dried over K₂CO₃ and evaporated. The crude 1-F-AZADO (8) was purified with column chromatography (Et₂O – Hexane = 2 : 1) to afford 1-F-AZADO (8; 56.0 mg, 0.329 mmol, 61% for 2 steps) as a yellow solid.

mp 148-150 °C (CHCl₃-Et₂O) (Color change: to red at 58-59 °C). IR (neat, cm⁻¹): 1449, 1323,

1257. MS m/z: 170 (M⁺), 97 (100%). HRMS (EI): Calcd. for C₉H₁₃FNO: 170.0981, found: 170.0968. Anal.: Calcd. for C₉H₁₃FNO: C, 63.51; H, 7.70; N, 8.23, found: C, 63.44; H, 7.67; N, 8.23.

Synthesis of 5-F-1-Me-AZADO (7)

Scheme S3. Synthesis of 5-F-1-Me-AZADO (7)

1-Methyl-N-trifluoroacetyl-2-azaadamantane (S8)

To a solution of carbamate $S7^2$ (1.89 g, 6.61 mmol) in MeOH (66 mL, 0.1 M), 10% Pd-C (189 mg) was added under Ar atmosphere. After the reaction flask was purged with H₂ three times, the reaction mixture was stirred at ambient temperature for 2 hr under atmosphere of hydrogen. After the reaction flask was purged with Ar atmosphere, the reaction mixture was filtered through Celite[®]. The filtrate was concentrated under reduced pressure. The residue was diluted with CHCl₃ and washed with sat. NaHCO₃, dried over K₂CO₃ and evaporated. The crude product was not further purified. To a solution of the crude product in CH₂Cl₂ (33 mL, 0.2 M), Et₃N (1.4 mL, 9.91 mmol), TFAA (1.4 mL, 9.91 mmol) was added at 0 °C. After the mixture was stirred for 2 hr at ambient temperature, H₂O was poured and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude amide was purified with column chromatography (AcOEt – Hexane =1 : 30) to afford amide S8 (1.25 g, 5.04 mmol, 76%) as a white solid.

mp 42 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃): δ 4.18 (br., 1H), 2.12 (br., 2H), 2.03 (br., d, J =

11 Hz, 2H), 1.89 (m, 3H), 1.85-1.70 (m, 3H), 1.63 (s, 3H), 1.58 (br., d, J = 12 .6 Hz, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 156.1 (q, J = 33.7 Hz), 116.9 (q, J = 292.1 Hz), 57.6, 50.6 (q, J = 4.1 Hz), 43.7, 35.9, 34.4, 29.4, 26.5. IR (neat, cm⁻¹): 1693. MS m/z: 247 (M⁺), 190 (100%). HRMS (EI): Calcd. for C₁₂H₁₆F₃NO: 247.1184 (M⁺), found: 247.1174.

5-Hydroxy-1-methyl-N-trifluoroacetyl-2-azaadamantane (S9)

To a solution of amide S8 (2.27 g \leftarrow 9.19 mmol) in CCl₄ – MeCN – H₂O (1.65 M, 5.6 mL \rightarrow 1.1 M, 8.4 mL \rightarrow 1.1 M, 8.4 mL), NaIO₄ (4.52 g, 21.1 mmol) and RuCl₃·nH₂O (95 mg, 0.460 mmol) was added at ambient temperature. After the reaction mixture was stirred vigorously for 9 hr at 60 °C, sat. NaHCO₃ and sat. Na₂S₂O₃ was poured and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude 5-hydroxy-amide was purified with column chromatography (AcOEt – Hexane = 1 : 2) to afford 5-hydroxy-amide S9 (1.29 g, 4.87 mmol, 53%) as a white solid.

mp 91 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃): δ 4.37 (br., 1H), 2.38 (br., 1H), 1.95 (br., d, J = 12.5 Hz, 2H), 1.9-1.7 (m, 5H), 1.69 (s, 3H), 1.63 (br., d, J = 13.0 Hz, 1H), 1.57 (br., d, J = 12.1 Hz, 1H), 1.48 (br., d, J = 13.0 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 156.1 (q, J = 34.6 Hz), 116.7 (q, J = 291.3 Hz), 66.71, 66.66, 52.3 (q, J = 4.9 Hz), 51.3, 43.3, 42.4, 34.6, 29.0, 28.8. IR (neat, cm⁻¹): 3428, 1692. MS m/z: 263 (M⁺), 206 (100%). HRMS (EI): Calcd. for C₁₂H₁₆F₃NO₂: 263.1133 (M⁺), found: 263.1118.

5-Fluoro-1-methyl-*N*-trifluoroacetyl-2-azaadamantane (S10)

To a solution of 5-hydroxy-amide **S9** (184 mg, 0.69 mmol) in CH_2Cl_2 (1.43 M, 0.5 mL), DAST (0.46 mL, 3.5 mmol) was added at -78 °C. After the reaction mixture was stirred for 1 hr at 0 °C, the mixture was diluted with Et_2O and quenched with H_2O . The mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude 5-fluoro-amide was purified with column chromatography (AcOEt – Hexane =1 : 30) to afford

5-fluoro-amide **S10** (183 mg, 0.69 mmol, 100%) as a white solid.

mp 48 °C (Hexane). ¹H-NMR (400 MHz, CDCl₃): δ 4.45 (br., 1H), 2.46 (br., 1H), 2.14-2.10 (m, 1H), 2.01-1.95 (m, 5H), 1.94-1.65 (m, 6H), 1.56-1.50 (m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 156.1 (q, J = 34.4 Hz), 116.6 (q, J = 290.6 Hz), 89.8 (d, J = 186.8 Hz), 61.3 (d, J = 10.7 Hz), 52.7 (m), 48.6 (d, J = 18.0 Hz), 42.1 (d, J = 1.6 Hz), 41.1 (d, J = 18.8 Hz), 39.9 (d, J = 18.0 Hz), 34.4 (d, J = 1.6 Hz), 29.6 (d, J = 9.0 Hz), 28.6. IR (neat cm⁻¹): 1698. MS m/z: 265 (M⁺), 190 (100%). HRMS (EI): Calcd. for $C_{12}H_{15}F_4NO$: 265.1090 (M⁺), found: 265.1068.

5-Fluoro-1-methyl-2-azaadamantane N-oxyl (7)

To a solution of 5-fluoro-amide S10 (270 mg, 1.02 mmol) in EtOH (6 mL), aq. NaOH (10%, 3 mL) was added at ambient temperature. After the reaction mixture was stirred for 2 hr at ambient temperature, the mixture was diluted with H_2O and extracted with CHCl₃. The organic layer was dried over K_2CO_3 and evaporated. The crude product was used without further purification. A solution of the crude product and Na_2WO_4 :2 H_2O (160 mg, 0.485 mmol) in MeOH (0.5 M, 2 mL) was stirred at ambient temperature for 30 min. UHP (365 mg, 3.88 mmol) was added to the mixture at 0 °C. After the mixture was stirred at ambient temperature for 1.5 hr, it was diluted with H_2O and MeOH was removed under reduced pressure. H_2O was added to the residue and the mixture was extracted with CHCl₃. The organic layer was dried over K_2CO_3 and evaporated. The crude 5-F-1-Me-AZADO (7) was purified with column chromatography (AcOEt – Hexane = 1 : 7) to afford 5-F-1-Me-AZADO (7; 106 mg, 0.579 mmol, 57% for 2 steps) as a yellow solid. IR (neat, cm⁻¹): 1215. MS m/z: 184 (M⁺), 111 (100%). HRMS (EI): Calcd. for $C_{10}H_{15}FNO$: 184.1138 (M⁺), found: 184.1126. Anal.: Calcd. for $C_{11}H_{18}NO_2$: C, 65.19; H, 8.21; N, 7.60, found C, 65.27; H, 8.09; N, 7.33.

Synthesis of 5,7-diF-1-Me-AZADO (10)

Scheme S4. Synthesis of 5,7-diF-1-Me-AZADO (10)

5-Fluoro-N-trifluoroacetyl-7-hydroxy-1-methyl-2-azaadamantane (43)

To a solution of amide **S10** (320 mg, 1.21 mmol) in CCl₄ – MeCN – H₂O (1.65 M, 0.73 mL $\stackrel{*}{\rightarrow}$ 1.1 M, 1.1 mL $\stackrel{*}{\rightarrow}$ 1.1 M, 1.1 mL), NaIO₄ (595 mg $\stackrel{*}{\leftarrow}$ 2.78 mmol) and RuCl₃·nH₂O (50.0 mg $\stackrel{*}{\leftarrow}$ 0.242 mmol) was added at ambient temperature. After the reaction mixture was stirred vigorously for 3.5 days at 70 °C, sat. NaHCO₃ and sat. Na₂S₂O₃ was poured and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude 5-hydroxy-7-fluoro-amide was purified with column chromatography (AcOEt – Hexane = 1 : 4) to afford 5-hydroxy-7-fluoro-amide **S11** (71.6 mg, 0.254 mmol, 21%, 77% brsm) as a white solid accompanied with recovered amide **S10** (234 mg). mp 97 °C (Et₂O-Hexane). ¹H-NMR (600 MHz, CDCl₃): δ 4.46 (br., 1H), 2.01 (dtt, J = 12.2, 4.4, 2.2 Hz, 1H), 1.97-1.81 (m, 5H), 1.74-1.65 (m, 3H), 1.70 (s, 3H), 1.52 (dd, J = 12.6, 2.5 Hz, 1H).

2.2 Hz, 1H), 1.97-1.81 (m, 5H), 1.74-1.65 (m, 3H), 1.70 (s, 3H), 1.52 (dd, J = 12.6, 2.5 Hz, 1H). ¹³C-NMR (150 MHz, CDCl₃): δ 156.2 (q, J = 34.4 Hz), 116.4 (q, J = 290.0 Hz), 90.8 (d, J = 189.2 Hz), 69.4 (d, J = 11.5 Hz), 61.5 (d, J = 11.5 Hz), 52.17 (m), 50.1, 47.9 (d, J = 17.2 Hz), 47.4 (d, J = 18.0 Hz), 42.2 (d, J = 1.7 Hz), 40.0 (d, J = 19.7 Hz), 28.1. IR (neat, cm⁻¹): 3415, 1701. MS m/z: 281 (M⁺), 206 (100%). HRMS (EI): Calcd. for C₁₂H₁₅F₄NO₂: 281.1039, found: 281.1034.

5,7-Difluoro-N-trifluoroacetyl-1-methyl-2-azaadamantane (S12)

To a solution of 5-hydroxy-7-fluoro-amide S11 (26.0 mg ←0.092 mmol) in CH₂Cl₂ (1.43 M ←0.064 mL), DAST (0.061 mL, 0.46 mmol) was added at -78 °C. After the reaction mixture was stirred for 1 hr at 0 °C, the mixture was diluted with Et₂O and quenched with H₂O. The mixture was extracted with AcOEt. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude 5,7-difluoro-amide was purified with column chromatography (AcOEt – Hexane =1 : 15) to afford 5,7-difluoro-amide S12 (14 mg, 0.049 mmol, 53%) as a white solid.

mp 99 °C (Hexane). ¹H-NMR (600 MHz, CDCl₃): δ 4.52 (br s, 1H), 2.15-2.11 (m, 2H), 2.06-2.00 (m, 2H), 1.95-1.84 (m, 4H), 1.72 (s, 3H), 1.73-1.68 (m, 2H). ¹³C-NMR (150 MHz, CDCl₃): δ 156.3 (q, J = 34.9 Hz), 116.3 (q, J = 290.2 Hz), 90.9 (dd, J = 191.5, 13.6 Hz), 61.6 (t, J = 11.5 Hz), 51.9 (m), 47.6 (m), 45.7 (m), 40.0 (t, J = 19.4 Hz), 28.0. IR (neat, cm⁻¹): 1698. MS m/z: 283 (M⁺), 208 (100%). HRMS (EI): Calcd. for C₁₂H₁₄F₅NO: 283.0966, found.: 283.0993.

5,7-Difluoro-1-methyl-2-azaadamantane N-oxyl (10)

To a solution of 5,7-difluoro-amide S12 (30 mg, 0.106 mmol) in EtOH (1 mL), aq. NaOH (10%, 0.32 mL) was added at ambient temperature. After the reaction mixture was stirred for 0.25 hr at ambient temperature, the mixture was diluted with H_2O and extracted with CHCl₃. The organic layer was dried over K_2CO_3 and evaporated. The crude product was used without further purification. A solution of the crude product and $Na_2WO_4\cdot 2H_2O$ (16.5 mg, 0.053 mmol) in MeCN (0.5 M, 212 μ L) was stirred at ambient temperature for 30 min. UHP (49.9 mg, 0.53 mmol) was added to the mixture at 0 °C. After the mixture was stirred at ambient temperature for 4 hr, it was diluted with H_2O and extracted with CHCl₃. The organic layer was dried over K_2CO_3 and evaporated. The crude 5,7-diF-1-Me-AZADO (10) was purified with column chromatography (Et₂O – Hexane = 1 : 2) to afford 5,7-diF-1-Me-AZADO (10; 12.3 mg, 0.061 mmol, 58% for 2 steps) as a yellow solid.

mp 104-105 °C (CHCl₃-Et₂O). IR (neat, cm⁻¹): 1443, 1143. MS m/z: 202 (M⁺), 129 (100%). HRMS (EI): Calcd. for $C_{10}H_{14}F_{2}NO$: 202.1043, found: 202.1043.

Synthesis of 5-OH-1-Me-AZADO (5)

Scheme S5. Synthesis of 5-OH-1-Me-AZADO (5)

5-Hydroxy-1-methyl-2-azaadamantane N-oxyl (5)

To a solution of hydroxy-amide **S9** (500 mg, 1.90 mmol) in (0.5 M, 40 mL), Amberlyst[®] A-26 (OH form) (5.50 g) was added at ambient temperature. After the reaction mixture was stirred for 40 hr at 50 °C, the reaction mixture was filtered through Celite[®]. The filtrate was concentrated under reduced pressure. The crude product was not further purified. A solution of the crude product and $Na_2WO_4\cdot 2H_2O$ (314 mg, 0.95 mmol) in MeOH (0.5 M, 4 mL) was stirred at ambient temperature for 30 min. UHP (715 mg, 7.6 mmol) was added to the mixture at ambient temperature. After the mixture was stirred at ambient temperature for 2 hr, it was diluted with H_2O then MeOH was removed under reduced pressure. H_2O and was added to the residue and the mixture was extracted with CHCl₃. The organic layer was dried over K_2CO_3 and evaporated. The crude 5-OH-AZADO (5) was purified with column chromatography (AcOEt – Hexane = 4 : 1) to afford 5-OH-AZADO (5; 217.5 mg, 1.19 mmol, 63% for 2 steps) as a orange solid.

IR (neat, cm⁻¹): 3396. MS m/z: 182 (M⁺), 182 (100%). HRMS (EI): Calcd. for C₁₀H₁₆NO₂ 182.1181 (M⁺), found: 182.1161. Anal.: Calcd. for C₁₁H₁₈NO₂: C, 65.91; H, 8.85; N, 7.69, found: C, 65.69; H, 8.83; N, 7.65.

Synthesis of 5-MeO-1-Me-AZADO (6)

Scheme S6. Synthesis of 5-MeO-1-Me-AZADO (6)

5-Methoxy-1-methyl-2-azaadamantane N-oxyl (6)

To a mixture of NaH (82 mg, 3.42 mmol) in THF (1.0 mL), a solution of hydroxy-amide S9 (300 mg, 1.14 mmol) in THF (2.8 mL) was added at 0 °C. After the reaction mixture was stirred for 0.5 hr at 0 °C, Me₂SO₄ (0.32 mL, 3.42 mmol) was added dropwise. After the reaction mixture was stirred for 3 hr at ambient temperature, another NaH (82 mg, 3.42 mmol) and Me₂SO₄ (0.32 mL, 3.42 mmol) was added. After the reaction mixture was stirred for 1 hr at ambient temperature, H₂O was added and extracted with Et₂O. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude product was purified with column chromatography (AcOEt – Hexane = 1:15) to afford mixture of the methylated product and Me₂SO₄ (403 mg). The mixture was not further purified. To a solution of the mixture (333 mg of 403 mg) in EtOH (4 mL), aq. NaOH (50%, 2 mL) was added at ambient temperature. After the reaction mixture was stirred for 1 hr at ambient temperature, the mixture was diluted with H₂O and extracted with CHCl₃. The organic layer was dried over K₂CO₃ and evaporated. The crude product was not further purified. A solution of the crude product and Na₂WO₄·2H₂O (122 mg, 0.37 mmol) in MeOH (0.5 M, 1.5 mL) was stirred at ambient temperature for 30 min. UHP (280 mg, 2.96 mmol) was added to the mixture at 0 °C. After the mixture was stirred at ambient temperature for 3 hr, it was diluted with H₂O and MeOH was removed under reduced pressure. H₂O and was added to the residue and the mixture was extracted with CHCl₃. The organic layer was dried over K₂CO₃ and evaporated. The crude 5-MeO-AZADO (6) was purified with column chromatography (AcOEt – Hexane = 1:4) to afford 5-MeO-AZADO (6; 105 mg, 0.534 mmol, 56% for 3 steps) as a orange solid.

IR (neat, cm⁻¹): 1215. MS m/z: 196 (M⁺), 196 (100%). HRMS (EI): Calcd. for C₁₁H₁₈NO₂ 196.1338 (M⁺), found: 196.1319. Anal.: Calcd. for C₁₁H₁₈NO₂: C, 67.32; H, 9.24; N, 7.14, found: C, 67.14; H, 9.16; N, 7.10.

Preparation of 5-F-AZADO⁺NO₃⁻(11)

Method 1: using NO₂ gas

Scheme S7. Preparation of 5-F-AZADO⁺NO₃⁻ (11) using NO₂ gas³

F—
$$\stackrel{NO_2 (g)}{\longrightarrow}$$
 $Et_2O, 94\%$ $F \stackrel{\bigcirc}{\longrightarrow}$ NO_3 NO_3

NO₂ gas was bubbled to the solution of 5-F-AZADO (9; 16 mg, 0.094 mmol) and Et₂O at ambient temperature. After the solution turned colorless, the yellow precipitate was filtered, washed with Et₂O, and dried *in vacuo* to yield 5-F-AZADO⁺NO₃⁻(11; 20.5 mg, 0.088 mmol, 94%) as a yellow solid.

mp 135-140 °C (dec). IR (neat, cm⁻¹): 1628, 1372, 1333. MS m/z: 171 (M⁺ + H – NO₃), 153 (100%). HRMS (EI): Calcd. for C₉H₁₄FNO 171.1054, found: 171.1040. Anal.: Calcd. for C₉H₁₃FN₂O₄: C, 46.55; H, 5.64; N, 12.06, found: C, 46.26; H, 5.73; N, 11.86.

Method 2: using HNO₃

Scheme S8. Preparation of 5-F-AZADO⁺NO₃⁻ (11) using HNO₃

F—N-
$$\dot{O}$$
 HNO₃, Et₂O \rightarrow NO₃ NO₃ S-F-AZADO (9) \rightarrow 5-F-AZADO \uparrow NO₃ (11)

To a solution of 5-F-AZADO (9; 54.04 mg, 0.318 mmol) in Et₂O (0.1 M, 4.8 mL), conc. HNO₃ (70% aqueous solution; 21 μ L, 0.477 mmol) was added at ambient temperature and the solution was stirred under O₂ atmosphere. After the solution turned colorless, the yellow precipitate was filtered, washed with Et₂O, and dried *in vacuo* to yield 5-F-AZADO⁺NO₃⁻ (11; 70.6 mg, 0.304 mmol, 96 %) as a yellow solid.

Representative Procedures of Aerobic Oxdation

Method A: To a solution of 4-methoxybenzyl alcohol (**13a**; 181 mg, 1.31 mmol) in AcOH (1.3 ml, 1 M), 5-F-AZADO (**9**; 2.21 mg, 0.013 mmol) and NaNO₂ (9.0 mg, 0.131 mmol) was added at ambient temperature and the solution was stirred under Air atmoshere (balloon) for 3 h. The reaction mixture was diluted with Et₂O and quenched with sat. Na₂SO₃ and sat. Na₂CO₃. The mixture was extracted with Et₂O and the organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography.(Et₂O: hexane = 1: 2) to afford 4-methoxybenzaldehyde (**13b**; 172 mg, 1.26 mmol, 96%) as a colorless oil.

Method B: To a solution of 4-methoxybenzyl alcohol (**13a**; 69.1 mg, 0.50 mmol) in AcOH (1.5 ml, 0.33 M), 5-F-AZADO $^+$ NO $_3^-$ (**11**, 5.8 mg, 0.025 mmol) was added at ambient temperature and the solution was stirred under air atmosphere (balloon) for 45 min. The reaction mixture was diluted with Et₂O and quenched with sat. Na₂SO₃ and sat. Na₂CO₃. The mixture was extracted with Et₂O and the organic layer was washed with brine, dired over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography (Et₂O: hexane = 1: 2) to afford 4-methoxybenzaldehyde (**13b**; 65.1 mg, 0.478 mmol, 96%) as a colorless oil.

Selected Examples of Aerobic Oxidation

Scheme S9. Aerobic oxidation of 23a

Method A: To a solution of **23a** (296 mg, 0.97 mmol) in AcOH (0.97 ml), 5-F-AZADO (**9**; 1.65 mg, 0.0097 mmol) and NaNO₂ (6.7 mg, 0.097 mmol) was added at ambient temperature and the solution was stirred under Air atmoshere (balloon) for 2 h. The reaction mixture was diluted with AcOEt and quenched with sat. Na₂SO₃. The mixture was extracted with Et₂O and the organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography.(Et₂O: hexane = 1:4) to afford 4-methoxybenzaldehyde (**23b**; 285 mg, 0.94 mmol, 97 %) as a colorless oil.

Method B: To a solution of **23a** (104 mg, 0.34 mmol) in AcOH (1.0 ml), 5-F-AZADO⁺NO₃⁻ (11, 3.98 mg, 0.0017 mmol) was added at ambient temperature and the solution was stirred under air

atmosphere (balloon) for 0.5 min. The reaction mixture was diluted with AcOEt and quenched with sat. Na₂SO₃. The mixture was extracted with AcOEt and the organic layer was washed with brine, dired over MgSO₄ and evaporated. The crude ketone was purified with column chromatography (AcOEt: hexane = 1:6) to afford **23b** (94 mg, 0.31 mmol, 91%) as a colorless oil.

Scheme S10. Aerobic Oxidation of 25a

Method A: To a solution of **25a** (21 mg, 0.043 mmol) in AcOH (0.11 ml), 5-F-AZADO (**9**; 0.22 mg, 0.0013 mmol) and NaNO₂ (0.3 mg, 0.004 mmol) was added at ambient temperature and the solution was stirred under Air atmoshere (balloon) for 2 h. The reaction mixture was diluted with AcOEt and quenched with sat. Na₂SO₃. The mixture was extracted with AcOEt and the organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography.(MeOH: AcOEt = 1:20) to afford **25b** (19 mg, 0.040 mmol, 91 %).

Method B: To a solution of **25a** (26 mg, 0.054 mmol) in AcOH (0.17 ml), 5-F-AZADO⁺NO₃⁻ (**11**, 0.63 mg, 0.0027 mmol) and NaNO₂ (0.2 mg, 0.0027 mmol) was added at ambient temperature and the solution was stirred under air atmosphere (balloon) for 1 h. The reaction mixture was diluted with AcOEt and quenched with sat. Na₂SO₃. The mixture was extracted with AcOEt and the organic layer was washed with brine, dired over MgSO₄ and evaporated. The crude ketone was purified with column chromatography (AcOEt) to afford **23b** (24 mg, 0.049 mmol, 90%).

Scheme S11. Aerobic Oxidation of 26a

Method A: To a solution of **26a** (>99% ee) (118 mg, 0.5 mmol) in MeCN (0.5 ml), 5-F-AZADO (9; 0.85 mg, 0.005 mmol) and NaNO₂ (3.5 mg, 0.005 mmol) and AcOH (57 μ l, 0.005 mmol) was added at ambient temperature and the solution was stirred under Air atmoshere (balloon) for 4 h. The reaction mixture was diluted with Et₂O and quenched with sat. NaHCO₃. The mixture was

extracted with Et₂O and the organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography.(Et₂O: Hexane: =1:1 to 2:1) to afford **26b** (>99% ee) (90 mg, 0.388 mmol, 77 %) as a colorless oil. Enantiomeric excess was ditermine by HPLC with CHIRALPAK AD-H (Daicel chemical industries, LTD.) (5% iPrOH in Hexane, flow rate = 0.5 ml/min).

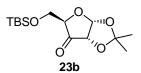
Method B: To a solution of **26a** (117 mg, 0.5 mmol) in MeCN (0.5 ml), 5-F-AZADO⁺NO₃⁻ (**11**, 5.8 mg, 0.025 mmol) and AcOH (0.057 ml) was added at ambient temperature and the solution was stirred under air atmosphere (balloon) for 8 h. The reaction mixture was diluted with Et₂O. The mixture was extracted with Et₂O and the organic layer was washed with brine, dired over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography (E : H = 1 : 1 to 2 : 1) to afford **26b** (>99% ee) (85.4 mg, 0.37 mmol, 74%) as a pale yellow oil. Enantiomeric excess was ditermined by HPLC with CHIRALPAK AD-H (Daicel chemical industries, LTD.) (5% iPrOH in Hexane, flow rate = 0.5 ml/min).

0.1-mol-scale oxidation of 1,2:4,5-di-O-isopropylidene-B-D-fructopyranose (22a)

Scheme S12. 0.1-mol-scale oxidation

To a solution of 1,2:4,5-di-O-isopropylidene-B-D-fructopyranose (**22a**; 26.0 g, 0.1 mol) in AcOH (100 ml, 1 M) in a three-necked 1L flask, 5-F-AZADO (**9**; 170 mg, 1.0 mmol) and NaNO₂ (690 mg, 10 mmol) was added at ambient temperature and the solution was stirred under Air atmoshere (balloon) for 3 hr. The reaction mixture was diluted with Et₂O and quenched with sat. Na₂SO₃ and sat. Na₂CO₃. The mixture was extracted with Et₂O and the organic layer was washed with brine, dried over MgSO₄ and evaporated. The crude aldehyde was purified with column chromatography (Et₂O: hexane = 1: 2 to Et₂O: hexane = 1: 1) to afford ketone (**22b**; 25.6 g, 99.2 mmol, 99%) as a colorless oil.

Figure 1. Chemical reactor of 0.1-scale oxidation



Characterization of 19b, 23b, 25b

Benzyl 4-oxocyclohexylcarbamate (19b)

¹H-NMR (400MHz, CDCl₃): δ 7.37-7.30 (m, 5H), 5.12 (s, 2H), 4.72 (br s, 1H), 3.99 (br s, 1H), 2.42-2.38 (m, 4H), 2.28-2.24 (m, 2H), 1.74-1.65 (m, 2H). ¹³C-NMR (100MHz, CDCl₃): δ 209.5, 155.6, 136.3, 128.5, 128.2, 128.1, 66.8, 47.9, 38.8, 32.1. IR (neat, cm⁻¹): 1717, 1685, 1532. MS m/z: 247 (M[×]), 91 (100%). HRMS (EI): Calcd. for C₁₄H₁₇NO₃: 247.1208, found: 247.1172.

5-*O-tert*-Butyldimethylsilyl-1,2-*O*-isopropylidene- α -D-erythro-3-pentulofuranose (23b)

¹H-NMR (400 MHz, CDCl₃): δ 6.13 (d, J = 4.6 Hz, 1H), 4.37-4.35 (m, 1H), 4.27 (dd, J = 4.6, 1.0 Hz, 1H), 3.88 (dd, J = 10.9, 1.7 Hz, 1H), 3.82 (dd, J = 10.9, 2.2 Hz, 1H), 1.45 (s, 3H), 1.44 (s, 3H), 0.86 (s, 9H). 0.06 (s, 3H), 0.03 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 210.9, 114.1, 103.8, 81.7, 77.1, 63.9, 27.7, 27.1, 25.8, 18.1, -5.5, -5.7. IR (neat, cm⁻¹): 1776. MS m/z: 245 (M⁺-tBu), 245 (100%). HRMS (EI): Calcd. for C₁₀H₁₇O₅Si: 245.0845, found: 245.0849.

1-(3',5'-O-(1,1,3,3-Tetraisopropyl-1,3-disiloxanediyl)- β -D-erythro-pentofuran-2-ulosyl)-cytosine (25b)

¹H-NMR (400 MHz, DMSO): δ 7.62 (d, J = 7.2 Hz, 1H), 7.46 (br s, 1H), 7.37 (br s, 1H), 5.73 (d, J = 7.2 Hz, 1H), 5.24 (s, 1H), 5.00 (d, J = 8.2 Hz, 1H), 4.04-3.86 (m, 3H), 1.07-0.96 (m, 28H).

25b

DMSO): δ 205.3,166.7, 154.4, 145.7, 94.9, 85.3, 78.8, 71.7, 63.1, 17.3, 17.1, 16.7, 16.7, 16.6, 12.8, 12.4, 12.0, 11.9. IR (neat, cm⁻¹): 1776. MS m/z: 483 (M⁺), 440 (100%). HRMS (EI): Calcd. for $C_{21}H_{37}N_3O_6Si_2$: 483.2221, found: 483.2202.

The effect of AcOH

Table S1. The effect of AcOH under 5-F-AZADO/NaNO2 condition in MeCN

Entry	AcOH (X eq.)	Time (h)	Conv. (%) ^a	Yield (%) ^b
1	0	24	0	0
2	2	18	88	88
3	5	5	100	98
4	solvent	2	100	98

- a) Calculated from NMR of crude products.
- b) Isolated yield

Table S2 The effect of AcOH under 5-F-AZADO⁺NO₃⁻ condition in MeCN

Entry	AcOH (X eq.)	Time (h)	Conv. (%) ^a	Yield (%) ^b
1	0	4.5	100	94
2	2	2.5	100	96
3	solvent	0.5	100	98

- a) Calculated from NMR of crude products.
- b) Isolated yield

Recycling of 5-F-AZADO⁺NO₃⁻ (13b)

Scheme S13 Recycling of 5-F-AZADO⁺NO₃⁻ (13b)

To a solution of 4-methoxybenzyl alcohol (**13a**; 69.1 mg, 0.50 mmol) in AcOH (0.5 ml, 1 M), 5-F-AZADO⁺NO₃⁻ (**11**, 5.8 mg, 0.025 mmol) was added at ambient temperature and the solution was stirred under O₂ atmosphere (balloon) for 1 h (Conv. >99%, select. >99% (determined by GC)). Hexane was added to the reaction mixture. After colorless solution was removed by pipet, excess amount of Et₂O was poured to the remaining yellow residue. The precipitated yellow 5-F-AZADO⁺NO₃⁻ (**11**) was filtered and washed with Et2O. 5-F-AZADO⁺NO₃⁻ (**11**, 4.2 mg 0.018 mmol, 72 %) was recovered.

To a solution of 4-methoxybenzyl alcohol (13a; 47.0 mg, 0.34 mmol) in AcOH (0.34 ml, 1 M), $5\text{-F-AZADO}^+\text{NO}_3^-$ (11, 5.8 mg, 0.025 mmol) was added at ambient temperature and the solution was stirred under O_2 atmosphere (balloon) for 1 h. Conv. >99%, select. >99% was conformed by GC.

Reactivity of Substituted TEMPO

Table S3. Evaluation of catalytic efficiency of 4-substituted TEMPO

Entry	Entry Catalyst		(%) ^a
		13b	13a
1	TEMPO	25	75
2	4-HO-TEMPO	34	66
3	4-MeO-TEMPO	42	58

a) Calculated from NMR of crude products.

Electrochemical Measurement⁴

The cyclic voltammograms were measured on a Cypress CS-2010 electrochemical analyzer with a conventional three-electrode configuration at room temperature (approximately 23 °C). MeCN solution of nitroxyl radicals (1 mM) were used throughout the cyclic voltammetric measurements. Glassy carbon (BAS, 3 mm diameter), platinum wire, and Ag/Ag⁺ (BAS type RE-5) were used as working, auxiliary, and reference electrodes, respectively. Electric potential values reported herein referred to this reference electrode. NaClO₄ (0.2 M) was used as supporting electrolyte.

The cyclic voltammograms of AZADO, 1-F-AZADO and 5-F-AZADO are shown in Fig. S1, and that of 1-Me-AZADO, 5-F-1-Me-AZADO and 5,7-diF-1-Me-AZADO are shown in Fig. S2. The cyclic voltammograms obtained various potential sweep rates (ν) are independently given in Fig S3 (1-F-AZADO), Fig. S4 (5-F-AZADO), Fig. S5 (5-F-1-Me-AZADO), Fig. S6 (5,7-diF-1-Me-AZADO).

The E° values of the nitroxyl radicals, which were calculated by $(E_{pa} + E_{pc}) / 2$, are summarized in Table S1 $(E_{pa}$ and E_{pc} denote anodic and cathodic peak potentials, respectively).

Figure S2. Cyclic voltammograms of various AZADO derivatives at scan rate of 50 mVs⁻¹.

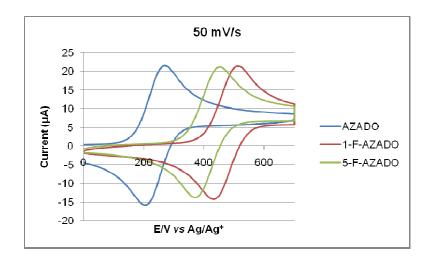


Figure S3. Cyclic voltammograms of various 1-Me-AZADO derivatives at scan rate of 50 mVs⁻¹.

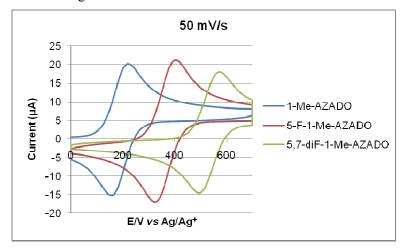


Figure S4. Cyclic voltammograms of 1-F-AZADO at varying scan rates.

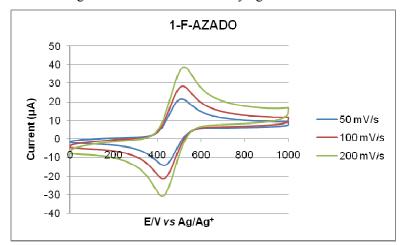


Figure S5. Cyclic voltammograms of 5-F-AZADO at varying scan rates.

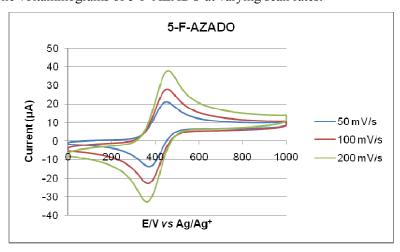


Figure S6. Cyclic voltammograms of 5-F-1-Me-AZADO at varying scan rates.

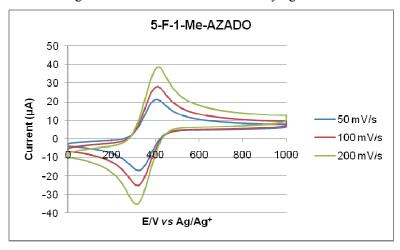


Figure S7. Cyclic voltammograms of 5,7-di-F-1-Me-AZADO at varying scan rates.

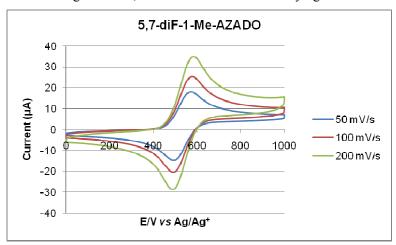
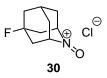



Table S4. The formal potential of various nitroxyl radicals

Nitroxyl radical	E ^o ' vs Ag/Ag ⁺
AZADO	+ 236 mV
5-F-AZADO	+ 413 mV
1-F-AZADO	+ 471 mV
1-Me-AZADO	+ 186 mV
5-F-1-Me-AZADO	+ 363 mV
5,7-diF-1-Me-AZADO	+ 534 mV

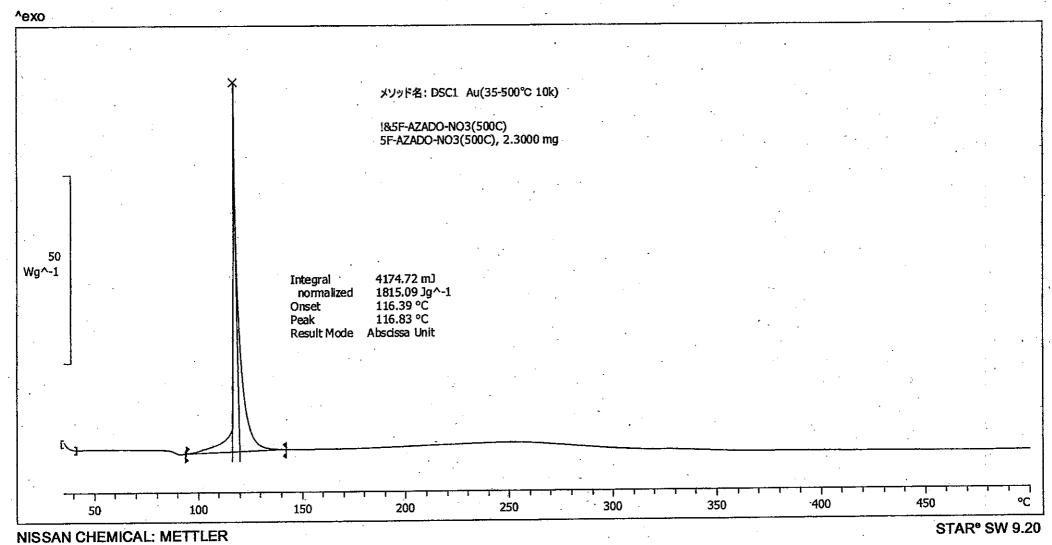
Preparation of oxoammonium chlorides⁵

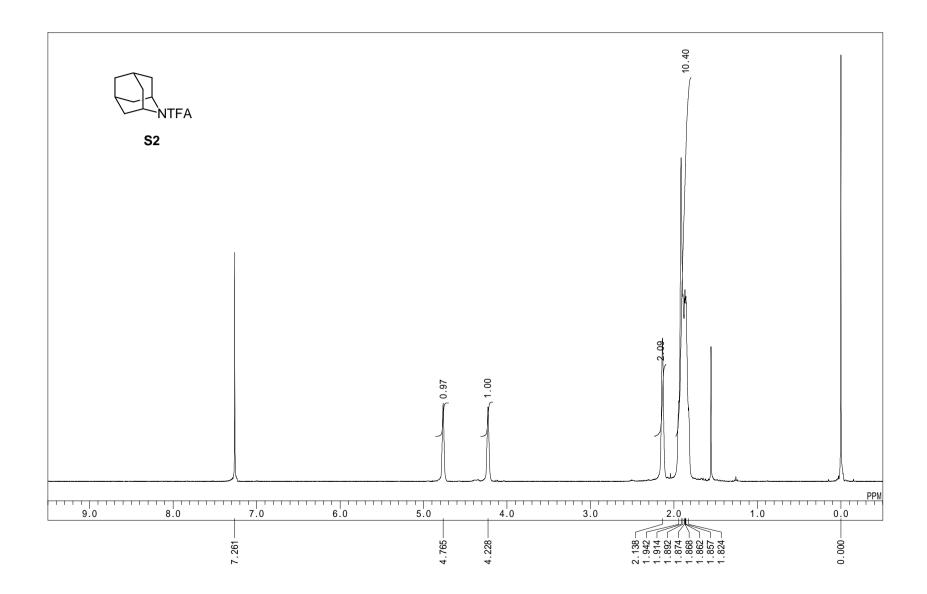
5-F-AZADO⁺Cl⁻ (30)

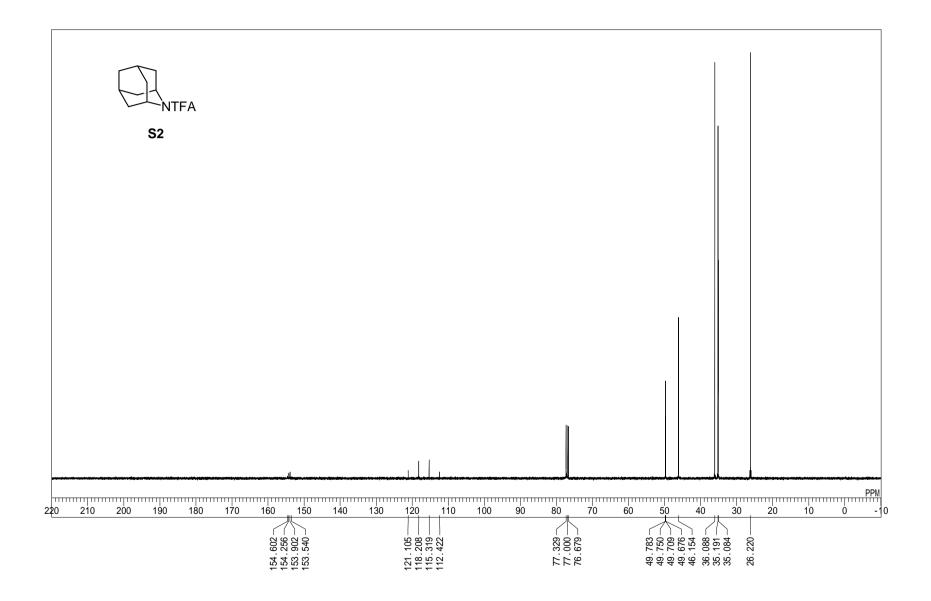
Cl₂ gas was bubbled to the mixture of 5-F-AZADO (9; 63.3 mg, 0.372 mmol) and CCl₄ (1.24 mL, 0.3 M) at ambient temperature. After stirring for 30 min, the orange precipitate was filtered and washed with Et₂O and dried *in vacuo* to yield 5-F-AZADO⁺Cl⁻ (30; 46.8 mg, 0.228 mmol, 61%).

mp 79-83 °C (dec). IR (neat, cm⁻¹): 1624, 1360. MS m/z: 171 (M⁺+H – Cl), 171 (100%). HRMS (EI): Calcd. for C₉H₁₄FNO 171.1054, found: 171.1054.

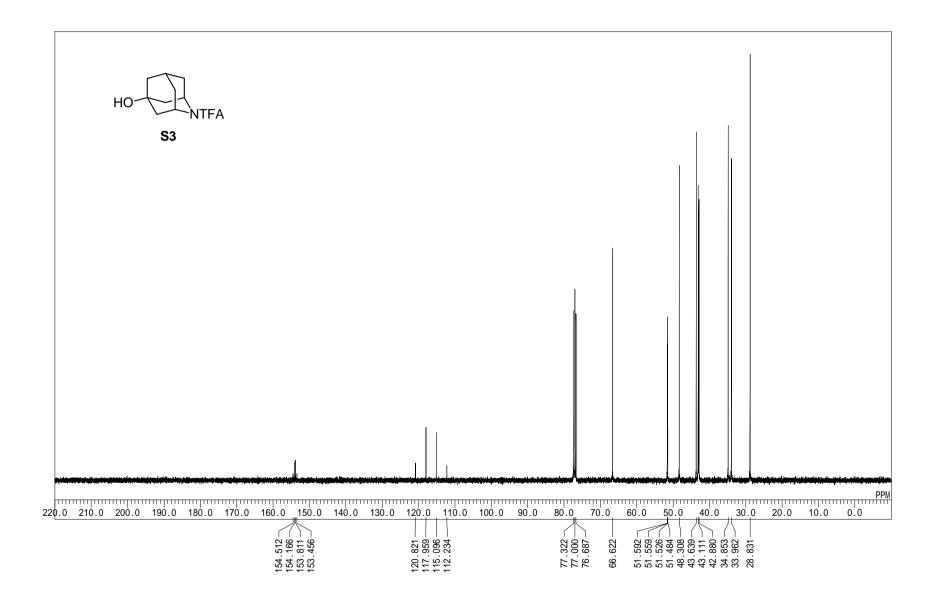
AZADO⁺Cl⁻ (29)


The same procedure with AZADO (3) instead of 5-F-AZADO (9) provided AZADO⁺Cl⁻ (29).


IR (neat, cm⁻¹): 1627. MS m/z: 187 (M⁺), 153 (100%). HRMS (EI): Calcd. for C₉H₁₄ClNO (M⁺), 187.0764, found: 187.0743. Anal.: Calcd. for C₉H₁₄ClNO C,57.6; H,7.52; N,7.46, found: C,57.1; H,7.39; N,7.06.


References and Notes

- 1. 2-Azaadamantane **S1** was prepared by scalable 3-step method from 2-adamantanone. (WO 2009066735)
- 2. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem. Soc. 2006, 128, 8412.
- 3. Chou, S.; Nelson, J. A.; Spencer, T. A. J. Org. Chem. 1974, 39, 2356.
- 4. The cyclic voltammograms of AZADO and 1-Me-AZADO were previously measured under same conditions; see Reference 2.
- 5. (a) Golubev, V. A.; Rozantsev, E. G.; Neiman, M. B. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1965**, 1898. (b) Shibuya, M.; Sato, T.; Tomizawa, M.; Iwabuchi, Y. *Chem. Commun.* **2009**, 1739.


5F-A2ADO-NO。全/対容前でル 10℃/mル戸迄 57-500℃

