Supporting Information

Influence of Surface Oxidation on the Aggregation and Deposition Kinetics of Multi-Walled Carbon Nanotubes in Monovalent and Divalent Electrolytes

PENG YI AND KAI LOON CHEN

Department of Geography and Environmental Engineering
Johns Hopkins University
Baltimore, MD 21218-2686
(*E-mail: kailoon.chen@jhu.edu)

Contents

TABLE S1. Stability Constants of Aromatic Calcium Carboxylates, K, and First Acid Dissociation Constants, K_{a1}, for Three Aromatic Carboxylic Acids at 0 M Ionic Strength and 25 °C.

FIGURE S1. Aggregation profiles of HO-MWNTs over a range of NaCl concentrations at pH 7.1.

References.
Table S1. Stability Constants of Aromatic Calcium Carboxylates, K, and First Acid Dissociation Constants, K_{a1}, for Three Aromatic Carboxylic Acids at 0 M Ionic Strength and 25 °C

<table>
<thead>
<tr>
<th>compound</th>
<th>structural formula</th>
<th>log K^a</th>
<th>pK_{a1}^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzoic acid</td>
<td></td>
<td>1.32<sup>b</sup></td>
<td>4.20</td>
</tr>
<tr>
<td>isophthalic acid</td>
<td></td>
<td>2.00</td>
<td>3.50</td>
</tr>
<tr>
<td>phthalic acid</td>
<td></td>
<td>2.45</td>
<td>2.95</td>
</tr>
</tbody>
</table>

^a All constants are obtained from NIST Standard Reference Database 46 (NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0) unless indicated otherwise.

^b Constant is obtained from Emara et al. as it is not provided in the NIST Database. Note that K represents the stability constants for monodentate calcium carboxylate formation for benzoic acid and bidentate calcium carboxylate formation for isophthalic and phthalic acids.
FIGURE S1. Aggregation profiles of HO-MWNTs over a range of NaCl concentrations at pH 7.1.
References