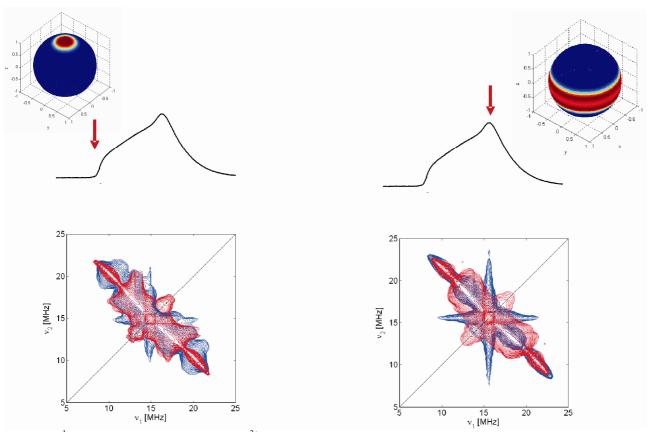
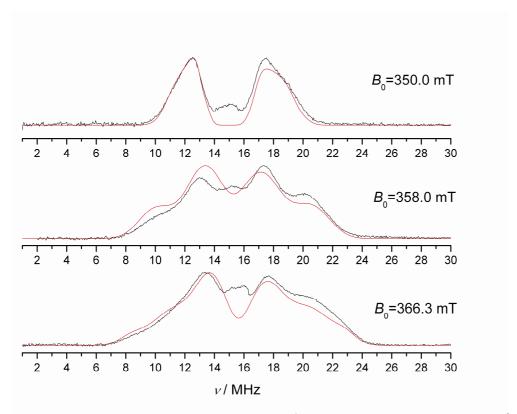

SUPPORTING INFORMATION

The Hydration Structure of the Ti(III) Cation as Revealed by Pulse EPR and DFT Studies. New Insights into a Textbook Case


Sara Maurelli, Stefano Livraghi, Mario Chiesa*, Elio Giamello Dipartimento di Chimica IFM, Università di Torino and NIS, Nanostructured Interfaces and Surfaces Centre of Excellence, Via P. Giuria 7, I - 10125 Torino, Italy

Sabine Van Doorslaer University of Antwerp, Department of Physics, Universiteitsplein 1, B-2610 Wilrijk-Antwerp, Belgium


> Cristiana Di Valentin, Gianfranco Pacchioni Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi, 53 – 20125, Milano, Italy

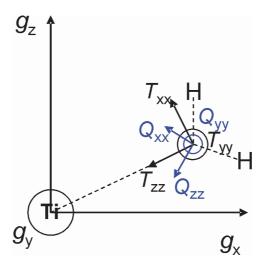

Figure S1. Simulation of the correlation ridges at the two field positions indicated on the ESE spectra above, expected for a three-spin system S=1/2, $I_a=1/2$ and $I_b=1/2$ assuming different parameters: a) and b) ${}^1A_{\parallel}={}^2A_{\parallel}=15.5$ MHz ${}^1A_{\perp}=15.5$ MHz and ${}^1\beta={}^2\beta=60^\circ$; c) and d) ${}^1A_{\parallel}=11.4$ MHz ${}^2A_{\parallel}=15.5$ MHz ${}^1A_{\perp}=1.5$ MHz, ${}^2A_{\perp}=3.5$ MHz, ${}^1\beta=0$, ${}^2\beta=90^\circ$

Figure S2 1 H HYSCORE spectra of $\text{Ti}(\text{H}_{2}\text{O})_{6}^{3+}$ taken at at the two field positions indicated on the ESE spectra above. Blue experimental, red simulation using the parameters listed in Table 1.

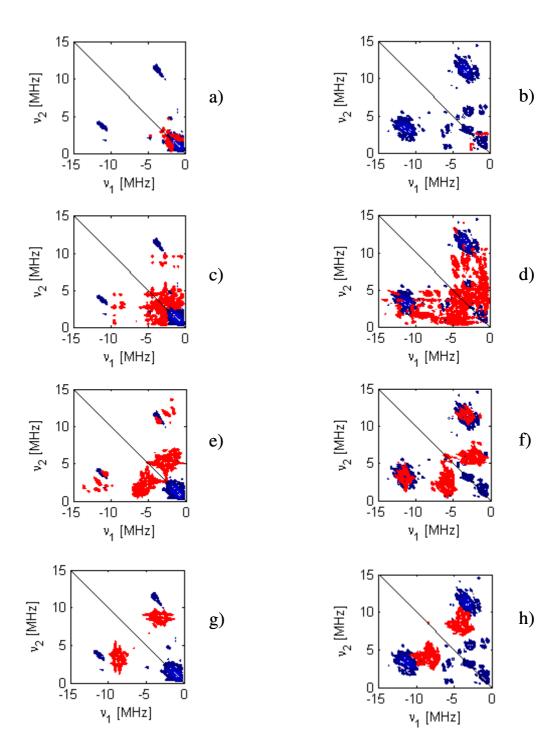


Figure S3 Experimental (black) and simulated (red) 1 H Davies-ENDOR spectra of Ti(H₂O)₆ $^{3+}$ taken at at different field positions indicated beside each spectrum. Spectra were measured at 10 K. Length of the three m.w. pulses, $t_{\pi}^{(1)} = 80$ ns, $t_{\pi/2}^{(2)} = 16$ ns $t_{\pi}^{(3)} = 32$ ns; length of the r. f. pulse $t_{\rm rf} = 12$ µs. The rf and mw data were optimized to obtain good 1 H ENDOR spectra, conditions which are unfavorable for the 17 O contributions. The parameters used in the simulations are the same adopted for the simulation of the 1 H HYSCORE spectra and listed in Table 1.

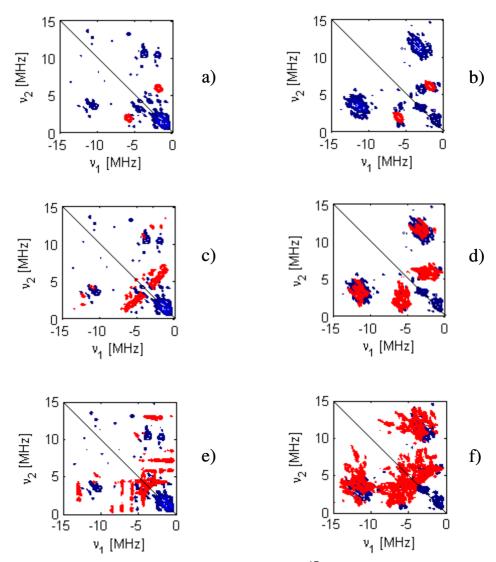


Figure S4 Schematic illustration of the 17 O hyperfine and quadrupole tensors orientations obtained from the DFT computations for the D_{3d} symmetry case and adopted in the simulations of the 17 O HYSCORE spectra reported in Figure 4. The corresponding Euler angles (α β γ) are (0+n60, 64, 0) and (0+n60, 31, 0) for the hyperfine and quadrupole tensors respectively, where n ranges from 1 to 6 and accounts for the orientations of the six oxygens in the xy plane of the complex.

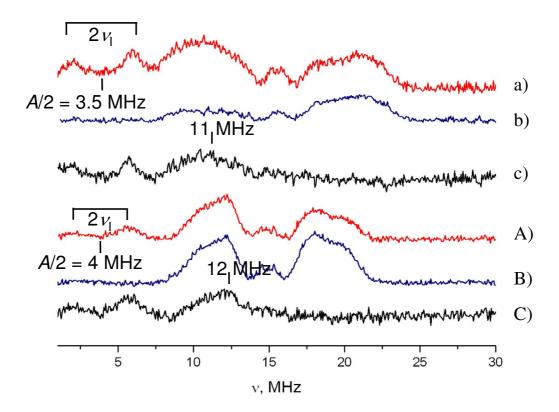

The largest quadrupole and hyperfine ($a_{\rm iso}$ is positive) are perpendicular to the water plane (y direction). The smallest hyperfine is directed along the Ti-O bond making an angle of 64° with the g_z direction. The largest negative quadrupole is in the zx plane making an angle of 31° with the g_z direction. The largest H hyperfines (T_{zz} not shown in the scheme) lay in the zx plane making an angle of 45° and 72° with the z direction

Figure S5 Effect of increasing $a_{\rm iso}$ on the ¹⁷O HYSCORE spectrum taken at $B_0 = 352.0$ mT (position 2 in Figure 1a) and $B_0 = 366.0$ mT (position 3 in Figure 1a) respectively. (a) and (b) | $a_{\rm iso}$ | = 0 MHz; (c) and (d) | $a_{\rm iso}$ = 4 MHz; (e) and (f) | $a_{\rm iso}$ | = 8 MHz; (g) and (h) | $a_{\rm iso}$ | = 12 MHz. For all spectra T = 1 MHz, e2qQ/h = 4 MHz, $\eta = 0.75$.

Figure S6 Effect of increasing quadrupole coupling on the ¹⁷O HYSCORE spectrum taken at $B_0 = 352.0$ mT (position 2 in Figure 1a) and $B_0 = 366.0$ mT (position 3 in Figure 1a) respectively. (a) and (b) e2qQ/h = 0; (c) and (d) e2qQ/h = 4 MHz; (e) and (f) e2qQ/h = 9 MHz. For all spectra $a_{iso} = 7.84$ MHz and T = 0.84 MHz.

Figure S7 ¹⁷O Davies ENDOR spectra taken at (a,b,c) B_0 = 366.0 mT and (A;B;C) B_0 = 352.0 mT. $t_{\rm rf}$ = 12 μ s, $t_{\pi/2}$ = 16 ns, t_{π} = 32 ns. Red spectra ¹⁷O , blue spectra ¹⁶O, black trace is the difference between red and blue.