Supporting Information

Synthesis and Characterization of Polythiophenes Bearing Aromatic Groups at the 3-Position

Kaoru Ohshimizu1,†, Ayumi Takahashi1,†, Yecheol Rho2,†, Tomoya Higashihara1,3,*, Moonhor Ree2,* and Mitsuru Ueda1,*

1 Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-120, O-okayama, Meguro-Ku, Tokyo, 152-8552, Japan

2 Department of Chemistry, Division of Advanced Materials Science, Center for Electro-Photo Behaviors in Advanced Molecular Systems, BK School of Molecular Science, and Polymer Research Institute, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Republic of Korea

3 PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
Figure S1. 1H NMR spectrum of compound 3 in CDCl$_3$.
Figure S2. 13C NMR spectrum of compound 3 in CDCl$_3$.
Figure S3. 1H NMR spectrum of compound 7 in CDCl$_3$.
Figure S4. 13C NMR spectrum of compound 7 in CDCl$_3$.
Figure S5. TGA profiles of P3PhT and P3PyT.
Figure S6. Fluorescence spectra of P3PhT and P3PyT in CHCl₃ solution, respectively.
Figure S7. Cyclic voltammograms of film of P3PhT and P3PyT on the working electrode in acetonitrile with tetrabutylammonium hexafluorophosphate as supporting electrolyte.