Supporting Information

Field-Assisted Synthesis and Electromagnetic Properties of Aligned Magnetic Nanostructures by γ-Irradiation Induced Reduction

Hongtao Zhao,†,‡,§ Bin Zhang,†,§ Jusheng Zhang,† Lifang Zhang,‡ Xijiang Han,† Ping Xu,*†,‡,¶ and Yu Zhou*§

† Department of Chemistry, ‡ School of Materials Science and Technology, Harbin Institute of Technology, Harbin 150001, China. ‡ Technical Physics Institute of Heilongjiang Academy of Sciences, Harbin 150086, China.

§ these two authors contribute equally to this paper.

*Corresponding author footnote. E-mail: pxu@hit.edu.cn; zhouyu@hit.edu.cn

Figure S1. SEM image of the Co nanoparticles prepared by direct γ-ray irradiation, without the application of an external magnetic field.
Figure S2. Low-magnification SEM image of the prepared Co nanostructures by a γ-irradiation technique with the assistance of an external magnetic field of 3000 G.

Figure S3. SEM image of the prepared Co nanostructures by a γ-irradiation technique with the assistance of an external magnetic field of 4000 G.
Figure S4. SEM image of the prepared Ni nanoparticles by a direct γ- irradiation technique without the assistance of an external magnetic field and application of any surfactant.