
Matthew K. Kiesewetter and Robert M. Waymouth

Figure S1. ¹H-NMR spectrum of partially converted allyl methyl carbonate. The resonances marked with * are due to allyl methyl carbonate, with ● are due to methanol and with ■ are due to allyl alcohol.



Figure S2. Slow approach to equilibrium (eq S3; from Espenson, Chemical Kinetics and Reaction Mechanisms) of the reaction shown in eq S1, R=H. Thermodynamic data extracted from plot using eqs S1-S3: $K_{eq} = 0.0075$; $\Delta G^{\circ} = 2.90$ kcal/mol; [4]_e=0.0047M; [RuII]_e=0.0027M; [allyl alcohol]_e=0.0027M; [D₂O]_e= 0.48M, α = 1.1898. k_1 =0.011₆x10⁻³ M⁻¹s⁻¹ and k_1 =1.54 x10⁻³ M⁻¹s⁻¹

Figure S3. Slow approach to equilibrium of **4** and CD₃OD in acetone-d₆. Thermodynamic data extracted from plot using eqs S1-S3 (R=CD₃): $K_{eq} = 0.0828$; $\Delta G^{\circ}=1.45$ kcal/mol; [**4**]_e=0.0042M; [RuII]_e=0.0057M; [allyl methyl ether]_e=0.0057M; [CD₃OD]_e= 0.0933M, $\alpha = 0.2341$. $k_1=0.238\times10^{-3}$ M⁻¹s⁻¹ and $k_{-1}=2.87\times10^{-3}$ M⁻¹s⁻¹

$$\ln\left\{\frac{\delta_t}{\delta_t(1-K^{-1})+\alpha}\right\} = -k_1 \alpha t + C$$
where $\alpha = [Ru^{IV}]_e + [ROH]_e + K^{-1}([Ru^{II}]_e + [allyl alcohol/ether]_e)$

Figure S4. IR spectra of A) IR spectrum of Merrifield's peptide resin, 1% crosslinked B) **3**, and C) **PS-3**.

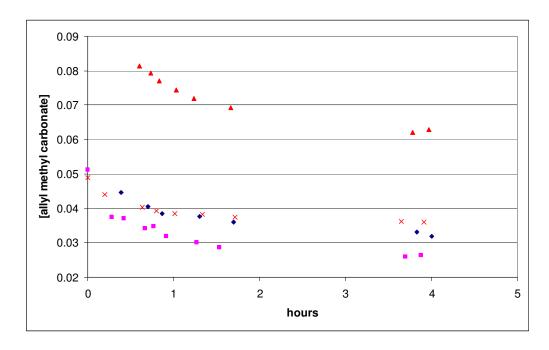


Figure S5. Plot of [allyl methyl ether] versus hours. Initial reaction conditions, all reactions under air in methanol- d_4 :

(\triangle) [4] \square =1.8 mM, [allyl methyl carbonate] \square = 100 mM, [allyl methyl ether] \square = 0.0 M;

(X) [4] \square =1.8 mM, [allyl methyl carbonate] \square = 49 mM, [allyl methyl ether] \square = 0.0 M;

(*) [4] \square =3.6 mM, [allyl methyl carbonate] $_{o}$ = 51mM, [allyl methyl ether] $_{o}$ = 0.274 M;

(\blacksquare) [4] \square =3.6 mM, [allyl methyl carbonate]₀= 51mM, [allyl methyl ether]₀= 0.0 M;