Electronic Supporting Information

Diastereoselective Preparation of Azetidines and Pyrrolidines

Antonio Feula, Louise Male and John S. Fossey*

*School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK

Table of Contents

<table>
<thead>
<tr>
<th>Experimental Section</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Procedures</td>
<td>3</td>
</tr>
<tr>
<td>General Procedure A</td>
<td>3</td>
</tr>
<tr>
<td>General Procedure B</td>
<td>3</td>
</tr>
<tr>
<td>General Procedure C</td>
<td>3</td>
</tr>
<tr>
<td>Experimental Procedures</td>
<td>3</td>
</tr>
</tbody>
</table>

(2a) cis-1-Benzyl-2-(iodomethyl)-4-phenylazetidine	3
(2b) cis-2-(iodomethyl)-1-(4-methoxybenzyl)-4-phenylazetidine	4
(2c) cis-2-(iodomethyl)-1-(4-methylbenzyl)-4-phenylazetidine	4
(2d) 3-cis-1-Benzyl-4-(iodomethyl)azetidin-2-yl)pyridine	5
(2e) 4-(cis-1-Benzyl-4-(iodomethyl)azetidin-2-yl)pyridine	5
(2f) cis-1-Benzyl-2-(iodomethyl)-4-(4-nitrophenyl)azetidine	6
(2g) cis-1-Benzyl-2-(2-bromophenyl)-4-(iodomethyl)azetidine	6
(2h) cis-1-Benzyl-2-(tert-butyl)-4-(iodomethyl)azetidine	6
(3c) cis-4-Iodo-1-(4-methylbenzyl)-2-phenylpyrrolidine	7
(3d) 3-(cis-1-Benzyl-4-iodopyrrolidin-2-yl)pyridine	7
(3e) 4-(cis-1-Benzyl-4-iodopyrrolidin-2-yl)pyridine	8
(4) N-Benzyl-1-(cis-1-benzyl-4-(pyridin-3-yl)azetidin-2-yl)methanamine	8
(5) N-Benzyl-1-(cis-1-benzyl-4-(pyridin-3-yl)azetidin-2-yl)methanamine	9
(6) N,1-Dibenzyl-5-(pyridin-3-yl)pyrrolidin-3-amine	9
(7) 3-(cis-1-Benzyl-4-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)azetidin-2-yl)pyridine	9
(8) 3-(trans-1-Benzyl-4-((4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidin-2-yl)pyridine	10

NMR Spectra

1H NMR Spectrum of 2a	12
13C(1H) NMR Spectrum (Pendant) of 2a	13
1H NMR Spectrum of 2b	14
13C(1H) NMR Spectrum (Pendant) 2b	15
1H NMR Spectrum of 2c	16
13C(1H) NMR Spectrum (Pendant) of 2c	17
1H NMR Spectrum of 2d (Post-Work Up)	18
1H NMR Spectrum of 2d (After Flash Chromatography)	19
Experimental Section

Commercially available solvents and reagents were used without further purification. 1H NMR spectra were recorded at 300 MHz on a Bruker AVIII300 NMR spectrometer, at 400 MHz on a AV400 NMR spectrometer and at 500 MHz on a DRX500 spectrometer, 13C NMR spectra at 100 MHz on a Bruker AVIII400 NMR spectrometer are proton decoupled and were recorded at room temperature unless otherwise stated, data was processed with Mestrec version 5.2.5-4731 and Topspin 2.0 (Version of: Nov 9th 2006). Chemical shifts (δ) are reported in ppm relative to TMS (δ 0.00) for the 1H NMR and to chloroform (δ 77.0) for the 13C NMR measurements, coupling constant J are expressed in Hertz, pendant technique was used for 13C NMR assignment. Mass spectra were recorded with electrospray MS Waters LCT Time of Flight Mass Spectrometer and with EI (GC/MS) Waters GCT Premier Time of Flight Mass Spectrometer.

General Procedures

General Procedure A:
Five equivalent of NaHCO$_3$ and 3 equivalent of I$_2$ were added to homoallylamine in CH$_3$CN, the mixture was stirred at room temperature for 16 hours and was monitored by TLC. When the reaction was complete solvent was removed *in vacuo*. To the residue thus obtained a solution of Na$_2$S$_2$O$_3$ was added, the compound was extracted with EtOAc, washed with water, dried over MgSO$_4$ and dried *in vacuo* to deliver “post-work-up” material.

General Procedure B:
Azetidines were refluxed for 4 hours in CH$_3$CN. At which point the reactions were judged to be complete (by TLC), the solvent was removed *in vacuo* to deliver isomerised product.

General Procedure C:
Azetidines were stirred at room temperature for 24 hours in neat benzylamine, after which time unreacted benzylamine was removed *in vacuo*, the residue was purified by flash chromatography.

Experimental Procedures

(2a) *cis*-1-Benzyl-2-(Iodomethyl)-4-phenylazetidine.
General Procedure A was used, homoallylamine (500 mg, 2.1 mmol), iodine (1.60 g, 6.3 mmol), sodium bicarbonate (885 mg, 11 mmol) and acetonitrile (50 mL). Yield (post work-up) 732 mg, 96%; after flash chromatography 343 mg, 45%. \(^1\)H NMR (\(\delta; 300\) MHz, CDCl\(3\)); 1.74 (1H, dt, \(J = 12.0 \& 9.0\), PhCHCH\(\text{H}\)), 2.65 (1H, \(dt, J = 9.0 \& 6.0\), PhCHCH\(\text{H}\)), 2.91 (1H, dd, \(J = 10.5 \& 3.0\), CH\(\text{H}\)), 2.98 (1H, \(t, J = 9.0\), CH\(\text{H}\)), 3.28 (1H, \(m\), NCHCH\(2\)), 3.61 (1H, \(d, J = 15.0\), CHH\(\text{Ph}\)), 3.99 (1H, \(d, J = 12.0\), NCH\(\text{H}\)Ph), 4.01 (1H, \(t, J = 9.0\), NCH\(\text{Ph}\)), 7.36 (7H, \(m\), Ar\(\text{H}\)), 7.55 (2H, \(m\), Ar\(\text{H}\)). \(^{13}\)C\({^1}\)H NMR (\(\delta; 100\) MHz, CDCl\(3\)) \(\delta\) 12.77 (CH\(\text{2}\)), 35.65 (CH\(\text{2}\)), 60.75 (CH\(\text{2}\)), 63.00 (CH), 126.94 (CH), 127.37 (CH), 128.29 (CH), 128.34 (CH), 129.37 (CH), 138.16 (C), 143.02 (C). High-resolution MS calcd for C\(17\)H\(18\)NI: 363.0484; found: 363.0485.

(2b) cis-2-(Iodomethyl)-1-(4-methoxybenzyl)-4-phenylazetidine.

General Procedure A was used, homoallylamine (644 mg, 2.54 mmol), iodine (1.94 g, 7.63 mmol), sodium bicarbonate (1.07 g, 12.7 mmol) and acetonitrile (50 mL). Yield (post-work up) 849 mg, 85%; after flash chromatography 409 mg, 41%. \(^1\)H NMR (\(\delta; 300\) MHz, CDCl\(3\)); 1.68 (1H, dt, \(J = 12.0 \& 9.0\), PhCHCH\(\text{H}\)), 2.60 (1H, \(dt, J = 9.0 \& 6.0\), PhCHCH\(\text{H}\)), 2.86 (1H, \(dd, J = 9.0 \& 6.0\), CH\(\text{H}\)), 2.93 (1H, \(t, J = 9.0\), CH\(\text{H}\)), 3.21 (1H, \(m\), NC\(\text{H}\)CH\(2\)), 3.50 (1H, \(d, J = 12.0\), NC\(\text{H}\)Ar), 3.82 (3H, \(s\), OMe), 3.90 (1H, \(d, J = 12.0\), NCH\(\text{H}\)Ar), 3.95 (1H, \(t, J = 9.0\), NCH\(\text{Ph}\)), 6.86 (2H, \(d, J = 9.0\), Ar\(\text{H}\)), 7.29 (3H, \(m\), Ar\(\text{H}\)), 7.38 (2H, \(t, J = 6.0\), Ar\(\text{H}\)), 7.50 (2H, \(d, J = 9.0\), Ar\(\text{H}\)). \(^{13}\)C\({^1}\)H NMR (\(\delta; 100\) MHz, CDCl\(3\)) \(\delta\) 12.89 (CH\(\text{2}\)), 35.56 (CH\(\text{2}\)), 55.28 (CH\(\text{3}\)), 59.95 (CH\(\text{2}\)), 62.68 (CH), 62.76 (CH), 113.65 (CH), 126.89 (CH), 127.29 (CH), 128.31 (CH), 130.20 (C), 130.44(CH), 143.08 (C), 158.91 (C). High-resolution MS calcd for formula C\(18\)H\(21\)NOI: 394.0668; found: 394.0674.

(2c) cis-2-(Iodomethyl)-1-(4-methylbenzyl)-4-phenylazetidine.

General Procedure A was used, homoallylamine (1.0 g, 3.98 mmol), iodine (3.02 g, 11.9 mmol), sodium bicarbonate (1.67 g, 19.9 mmol) and acetonitrile (50 mL). Yield (post-work up) 1.40 g, 93%; after flash chromatography 615 mg, 45%. \(^1\)H NMR (\(\delta; 300\) MHz, CDCl\(3\)); 1.72 (1H, dt, \(J = 12.0 \& 9.0\), PhCHCH\(\text{H}\)), 2.40 (3H, \(s\), tolyl-Me), 2.64 (2H, \(d, J = 9.0\), CH\(\text{H}\)), 2.90 (1H, \(dt, J = 9.0 \& 6.0\), PhCHCH\(\text{H}\)), 2.96 (1H, \(t, J = 9.0\), CH\(\text{H}\)), 3.26 (1H, \(d, J = 12.0\), NCH\(\text{H}\)Ar), 3.96 (1H, \(d, J = 12.0\), NCH\(\text{H}\)Ar), 3.96 (1H, \(d, J = 12.0\), NCH\(\text{H}\)Ar), S-4
3.99 (1H, \(t = 9.0, \text{NCHPh} \)), 7.17 (2H, \(d = 9.0, \text{ArH} \)), 7.32 (3H, \(m, \text{ArH} \)), 7.42 (2H, \(t = 6.0, \text{ArH} \)), 7.55 (2H, \(d = 9.0, \text{ArH} \)). \(^{13}\text{C}^{1\text{H}}\) NMR (\(\delta \); 100 MHz, CDCl\(_3\)) \(\delta \) 12.94 (CH\(_2\)), \(\delta \) 21.25 (CH\(_3\)), 35.63 (CH\(_2\)), 60.29 (CH\(_2\)), 62.79 (CH), 126.91 (CH), 127.31 (CH), 128.33 (CH), 128.98 (CH), 129.30(CH), 135.04 (C), 136.90 (C), 143.09 (C). High-resolution MS calcd for formula C\(_{18}\)H\(_{21}\)NI: 378.0719; found: 378.0725

(2d) 3-cis-1-Benzyl-4-(iodomethyl)azetidin-2-yl)pyridine.

General Procedure A was used, homoallylamine (1.50 g, 6.29 mmol), iodine (4.80 g, 19 mmol), sodium bicarbonate (2.64 g, 31.5 mmol), and acetonitrile (50 mL). Yield (post work-up), 2.08g, 91%; after flash chromatography 961 mg, 42%. \(^{1}\text{H} \) NMR (\(\delta \); 300 MHz, CDCl\(_3\)); 1.68 (1H, \(dt, J = 12.0 \& 9.0, \text{PyCHCH} \)), 2.60 (1H, \(dt, J = 9.0 \& 6.0, \text{PyCHCH} \)), 2.93 (2H, \(d, J = 9.0, \text{CH2} \)), 3.24 (1H, \(m, J = 6.0, \text{NCHCH2} \)), 3.64 (1H, \(d, J = 12.0, \text{NCHHPH} \)), 3.82 (1H, \(d, J = 12.0, \text{NCHHPH} \)), 3.98 (1H, \(t, J = 9.0, \text{NCHPy} \)), 7.26 (6H, \(m, \text{ArH} \)), 7.82 (1H, \(dt, J = 6.0 \& 3.0, \text{PyH} \)), 8.47 (1H, \(d, J = 3.0, \text{PyH} \)), 8.59 (1H, s, \text{PyH})). \(^{13}\text{C}^{1\text{H}}\) NMR (\(\delta \); 100 MHz, CDCl\(_3\)) \(\delta \) 12.32 (CH\(_2\)), \(\delta \) 35.22 (CH\(_2\)), 60.72 (CH\(_2\)), 60.76 (CH), 62.84 (CH), 123.30 (CH), 127.45 (CH), 128.24 (CH), 129.27 (CH), 134.68 (CH), 137.31 (C), 138.14 (C), 148.71 (CH). High-resolution MS calcd for formula C\(_{16}\)H\(_{17}\)N\(_2\)Na: 387.0334; found: 387.0349.

(2e) 4-(cis-1-Benzyl-4-(iodomethyl)azetidin-2-yl)pyridine.

General Procedure A was used, homoallylamine (1.00 g, 4.2 mmol), iodine (3.30 g, 13 mmol), sodium bicarbonate (1.76 g, 21 mmol) and acetonitrile (50 mL). Yield (post work-up), 1.45 g, 95%; after flash chromatography 642 mg, 51%. \(^{1}\text{H} \) NMR (\(\delta \); 300 MHz, CDCl\(_3\)); 1.60 (1H, \(dt, J = 12.0 \& 9.0, \text{PyCHCH} \)), 2.59 (1H, \(dt, J = 9.0 \& 6.0, \text{PyCHCH} \)), 2.89 (2H, \(d, J = 9.0, \text{CH2} \)), 3.23 (1H, \(m, \text{NCHCH2} \)), 3.63 (1H, \(d, J = 12.0, \text{NCHHPH} \)), 3.80 (1H, \(d, J = 12.0, \text{NCHHPH} \)), 3.93 (1H, \(t, J = 9.0, \text{NCHPy} \)), 7.25 (7H, \(m, \text{ArH} \)), 8.50 (2H, \(d, J = 3.0, \text{PyH} \)). \(^{13}\text{C}^{1\text{H}}\) NMR (\(\delta \); 100 MHz, CDCl\(_3\)) \(\delta \) 12.29 (CH\(_2\)), \(\delta \) 34.76 (CH\(_2\)), 60.89 (CH\(_2\)), 61.70 (CH), 62.75 (CH), 121.62 (CH), 127.53 (CH), 128.29 (CH), 129.29 (CH), 137.36(C), 149.74 (N.
(CH), 151.53 (C). High-resolution MS calcd for formula C_{16}H_{17}N_{2}NaI: 387.0334; found: 387.0341.

(2f) *cis-1-Benzyl-2-(iodomethyl)-4-(4-nitrophenyl)azetidine.*

General Procedure A was used, homoallylamine (350 mg, 1.24 mmol), iodine (944 mg, 3.72 mmol), sodium bicarbonate (520 mg, 6.2 mmol) and acetonitrile (50 mL). Yield (post-work up) 459 mg, 90%; after flash chromatography 233 mg, 46%.

1H NMR (δ; 300 MHz, CDCl₃); 1.65 (1H, dt, J = 12.0 & 9.0, ArCHCH₃), 2.66 (1H, m, ArCHC₂H), 2.96 (2H, m, C₂HI), 3.28 (1H, m, NCH₃CH₂I), 3.70 (1H, d, J = 12.0, NC₃H₃Ph), 3.83 (1H, d, J = 12.0, NCH₃H), 4.07 (1H, t, J = 9.0, ArCN), 7.28 (5H, m, ArH), 7.58 (2H, d, J = 6.0, ArH), 8.16 (2H, d, J = 9.0, ArH).

13C{1H} NMR (δ; 100 MHz, CDCl₃); δ 11.96 (CH₂), δ 35.29 (CH₂), 60.90 (CH₂), 62.37 (CH), 62.63 (CH), 123.50 (CH), 127.39 (CH), 127.55 (CH), 128.27 (CH), 129.28 (CH), 137.18 (C), 147.12 (C), 150.56 (C). High-resolution MS calcd for formula C_{17}H_{17}N₂O₂I: 408.0334; found: 408.0318.

(2g) *cis-1-Benzyl-2-(2-bromophenyl)-4-(iodomethyl)azetidine.*

General Procedure A was used, homoallylamine (750 mg, 2.4 mmol), iodine (1.81 g, 7.14 mmol), sodium bicarbonate (1.00 g, 12 mmol), and acetonitrile (50 mL). Yield (post work-up), 881 mg, 83%; after flash chromatography 445 mg; 42%.

1H NMR (δ; 300 MHz, CDCl₃); 1.51 (1H, dt, J = 12.0 & 9.0, ArCHCH₃), 2.85 (3H, m, ArCHC₂H₂ and C₂HI), 3.30 (1H, m, NCH₂CH₂I), 3.60 (1H, d, J = 12.0, NCH₃HPh), 3.95 (1H, d, J = 12.0, NCH₃HPh), 4.29 (1H, t, J = 9.0, NCH₃Ar), 7.12 (1H, td, J = 9.0 & 6.0, ArH), 7.35 (6H, m, ArH), 7.50 (dd, 1H, J = 9.0 & 6.0, ArH), 7.87 (1H, dd, J = 6.0 & 3.0, ArH).

13C{1H} NMR (δ; 100 MHz, CDCl₃); δ 12.88 (CH₂), δ 34.37 (CH₂), 60.92 (CH₂), 62.04 (CH), 62.87 (CH), 121.85 (C), 127.43 (CH), 127.45 (CH), 128.23 (CH), 128.33 (CH), 129.28 (CH), 132.22 (CH), 137.97 (C), 142.04 (C). High-resolution MS calcd for formula C_{17}H_{18}NBrI: 441.9667; found: 441.9660.

(2h) *cis-1-Benzyl-2-(tert-butyl)-4-(iodomethyl)azetidine.*

General Procedure A was used, homoallylamine (900 mg 4 mmol), iodine (3.00 g, 12 mmol), sodium bicarbonate (1.74 g, 21 mmol) and acetonitrile (50 mL). Yield (post- work up) 1.20 g, 87%; after flash chromatography 563 mg, 41%.

1H NMR (δ; 300 MHz, CDCl₃); 0.91 (9H, s, Me tert-Bu), 1.45 (1H, dt, J = 12.0 & 9.0, tert-BuCHCH₃), 2.17 (1H, dt, J = 9.0 & 6.0, tert-BuCHCH₃),
2.60 (1H, dd, J = 9.0 & 3.0, CHH), 2.75 (2H, m, CHHI and tert-BuCH), 3.04 (1H, m, NCH2CH2I), 3.46 (1H, d, J = 12.0, NCHHPh), 4.01 (1H, d, J = 12.0, NCHHPh), 7.32 (5H, m, ArH). 13C{1H} NMR (δ; 100 MHz, CDCl3) δ 12.75 (CH2), 25.92 (CH3), 26.52 (CH2), 33.44 (C), 63.28 (CH2), 69.40 (CH), 127.15 (CH), 128.21 (CH), 128.94 (CH), 139.41 (C). High-resolution MS calcd for formula C15H23NI: 344.0875; found: 344.0874.

(3c) cis-4-Iodo-1-(4-methylbenzyl)-2-phenylpyrrolidine.

General Procedure B was used, 2c (20 mg, 0.053 mmol) and acetonitrile (20 mL). Yield= 19 mg, 97%. 1H NMR (δ; 500 MHz, CDCl3); δ 2.35 (s, 3H, Me), δ 2.41 (m, 1H, PhCHCH), 2.76 (1H, dd, J = 10.0 & 5.0, NCHCH), 2.94 (1H, dt, J = 15.0 & 10.0, PhCHCH), 3.17 (1H, d, J = 10.0, NCHHAr), 3.43 (1H, dd, J = 9.0 & 3.0, NC), 3.57 (1H, t, J = 10.0, PhCH2), 3.87 (1H, m, NCH2CH2), 7.14 (2H, d, J = 10.0, ArH), 7.23 (2H, d, J = 10.0, ArH), 7.30 (1H, t, J = 5.0, ArH), 7.39 (2H, t, J = 10.0, ArH), 7.57 (2H, d, J = 5.0, ArH). 13C{1H} NMR (δ; 100 MHz, CDCl3) δ 17.97 (CH), 21.07 (CH), 48.85 (CH2), 56.32 (CH2), 64.29 (CH2), 69.28 (CH), 127.44 (CH), 127.78 (CH), 128.26 (CH), 128.33 (CH), 128.54(CH), 128.59(CH), 128.89 (CH), 128.94 (CH), 128.96 (CH), 129.22 (CH), 135.73 (C), 136.41(C), 141.92 (C). High-resolution MS calcd for formula C18H21NNaI: 400.0538; found: 400.0542.

(3d) 3-(cis-1-Benzyl-4-iodopyrrolidin-2-yl)pyridine.

General Procedure B was used, 2d (50 mg, 0.14 mmol) and acetonitrile (20 mL). Yield= 47 mg 95%. 1H NMR (δ; 300 MHz, CDCl3); 2.36(1H, m, PyCHCHH), 2.77 (1H, dd, J = 12.0 & 6.0, NCHHCHI), 2.99 (1H, dt, J = 15.0 &12.0, PyCHCHH), 3.26 (1H, d, J = 12.0, NCHHPh), 3.42 (1H, dd, J = 9.0 & 3.0, NCHHCHI), 3.64 (1H, t, J = 9.0, PyCHCH2), 3.85 (1H, d, J = 12.0, NCHHPh), 4.40 (1H, m, NCH2CHI), 7.14 (2H, d, J = 10.0, ArH), 7.28 (6H, m, ArH), 8.02 (1H, d, J = 9.0, PyH), 8.55 (1H, d, J = 6.0, PyH), 8.68 (1H, s, PyH).
\(^{13}\text{C}\{^1\text{H}\} \text{ NMR} (\delta; 100 \text{ MHz, CDCl}_3) \delta 17.41 (\text{CH}), 48.44 (\text{CH}_2), 56.73 (\text{CH}_2), 64.38 (\text{CH}_2), 66.60 (\text{CH}), 123.88 (\text{CH}), 126.96 (\text{CH}), 128.03 (\text{CH}), 128.24(\text{CH}), 128.32 (\text{CH}), 135.40 (\text{CH}), 138.32 (\text{C}), 147.60(\text{C}), 149.14 (\text{CH}), 149.74 (\text{CH}). \text{High-resolution MS calcd for formula C}_{16}\text{H}_{17}\text{N}_2\text{I}: 364.0437; \text{found: 364.0440.}

(3e) \text{4-(cis-1-Benzyl-4-iodopyrrolidin-2-yl)pyridine.}

\begin{align*}
\text{General Procedure B was used, 2e (50 mg, 0.14 mmol) and acetonitrile (20 mL). Yield = 49 mg, 98%. \text{^1H NMR (\delta; 300 MHz, CDCl}_3);} \\
2.36 (1\text{H, m, PyCHCH}) 2.80 (1\text{H, dd, } J = 12.0 \& 6.0, \text{NCHHHCH}), 2.99 (1\text{H, dt, } J = 15.0 \& 9.0, \text{PyCHCH}), 3.30 (1\text{H, d, } J = 15.0, \text{NCHHHPh}), 3.43 (1\text{H, dd, } J = 12.0 \& 3.0, \text{NCHHHCH}), 3.65 (1\text{H, t, } J = 9.0, \text{PyCHCH}), 3.88 (1\text{H, d, } J = 12.0, \text{NCHHHPh}), 4.40 (1\text{H, m, NCH}_2\text{CH}), 7.30 (5\text{H m, ArH}), \delta 7.52 (2\text{H, d, } J = 6.0, \text{PyH}), 8.61 (2\text{H, d, } J = 6.0, \text{PyH}). \text{^{13}\text{C}\{^1\text{H}\} \text{ NMR (\delta; 100 MHz, CDCl}_3) \delta 17.23 (\text{CH}), 48.17 (\text{CH}_2), 56.98 (\text{CH}_2), 64.31 (\text{CH}_2), 67.94 (\text{CH}), 122.78 (\text{CH}), 127.17 (\text{CH}), 128.25 (\text{CH}), 128.37(CH), 138.21 (\text{C}), 150.15 (\text{CH}), 151.47 (\text{C}). \text{High-resolution MS calcd for formula C}_{18}\text{H}_{21}\text{NI: 364.0437; found: 364.0440.}
\end{align*}

(4) \text{N-Benzyl-1-(cis-1-benzyl-4-(pyridin-3-yl)azetidin-2-yl)methanamine.}

\begin{align*}
\text{Method: Post-work up 2a azetidine (300 mg, was stirred at room temperature for 24 hours in neat paramethoxybenzylamine (5 mL), after which time unreacted benzylamine was removed in vacuo, the residue was purified by flash chromatography. Yield (2 steps) = 256 mg 78%. \text{^1H NMR (\delta; 400 MHz, CDCl}_3);} \\
1.61 (1\text{H, br, NH}), 1.88 (1\text{H, m, PhCHCHCH}), 2.27 (2\text{H, m, PhCHCHCH and NHCHCHCH}), 2.40 (1\text{H, dd, } J = 12.0 \& 6.0, \text{NHCHCHCH}), 3.19 (1\text{H, m, CHCH}_2\text{NH}), 3.38 (1\text{H, d, } J = 9.0, \text{NCHHHPh}), 3.40 (1\text{H, d, } J = 3.0, \text{NHCHHHAr}), 3.68 (1\text{H, d, } J = 3.0, \text{NHCHHHAr}), 3.68 (1\text{H, d, } J = 9.0, \text{NCHHHPh}) 3.69 (3\text{H, s, OMe}), 3.89 (1\text{H, t, } J = 12.0, \text{PhCHCH}_2), 6.70 (2\text{H, d, } J = 6.0, \text{ArH}), 7.00 (2\text{H, d, } J = 9.0, \text{ArH}), 7.12 (8\text{H, m, ArH}), 7.34 (2\text{H, d, } J = 9.0, \text{ArH}); \text{^{13}\text{C}\{^1\text{H}\} \text{ NMR (\delta; 100 MHz, CDCl}_3) \delta 30.78 (\text{CH}_2), 53.15 (\text{CH}_2), 53.96 (\text{CH}_2), 61.48 (\text{CH}_2), 62.52 (\text{CH}), 62.96 (\text{CH}), 123.29 (\text{CH}), 126.96 (\text{CH}), 127.30 (\text{CH}), 128.10 (\text{CH}), 128.24 (\text{CH}), 129.16 (\text{CH}), 134.66 (\text{CH}), 138.10 (\text{C}), 138.58 (\text{C}), 139.80 (\text{C}), 148.52 (\text{CH}), 148.74 (\text{CH}). \text{High-resolution MS calcd for formula C}_{25}\text{H}_{29}\text{N}_2\text{O: 373.2280; found: 373.2277}
\end{align*}
(5) \textit{N-Benzyl-1-\{cis-1-benzyl-4-(pyridin-3-yl)azetidin-2-yl\}methanamine.} \\
General Procedure C was used, post-work up 2d azetidine (500mg, 1.37mmol) and benzylamine (5 mL). Yield (2 steps) = 340 mg 72%. IR 3302, 3027, 2819, 1643, 1578, 1494, 1479, 1453, 1427, 1356, 1314, 1207, 1156; \textit{^1}H NMR (\delta; 400 MHz, CDCl3): 1.31 (1H, br, NH), 2.16 (1H, q, J = 8.0, PyCHCHH), 2.52 (2H, m, PyCHCHH and NCHCHHNH), 2.83 (1H, dd, J = 12.0 & 4.0, NCHCHHNH), 3.56 (1H, m, NCHCH2NH), 3.59 (1H, d, J = 12.0, NCH/Ph), 3.77 (1H, d, J = 12.0, NCH/Ph), 3.80 (1H, d, J = 12.0, NHCH/Ph), 4.04 (1H, d, J = 12.0, NHC/Ph), 4.08 (1H, t, J = 8.0, PyCH/CH2), 7.16 (1H, t, J = 8.0, ArH), 7.21 (1H, t, J = 8.0, ArH), 7.23 (2H, t, J = 8.0, ArH), 7.28 (1H, d, J = 8.0, ArH), 7.29 (2H, d, J = 8.0, ArH), 7.34 (2H, m, ArH), 7.38 (2H, d, J = 12.0, ArH), 7.69 (1H, dt, J = 8.0 & 4.0, ArH), 8.42 (dd, 1H, J = 6.0 & 4.0, PyH), 8.91 (1H, s, PyH). \textit{^13}C{^1}H NMR (\delta; 100 MHz, CDCl3) \delta 30.78 (CH2), 53.15 (CH2), 53.96 (CH2), 61.48 (CH2), 62.52 (CH), 62.96 (CH), 123.29 (CH), 126.96 (CH), 127.30 (CH), 128.10 (CH), 128.24(CH), 129.16 (CH), 134.66 (CH), 138.10 (C), 138.58 (C), 139.80 (C), 148.52 (CH), 148.74 (CH). High-resolution MS calcd for formula C23H25N3Na: 366.1949; found: 366.1949.

(6) \textit{N,1-Dibenzyl-5-(pyridin-3-yl)pyrrolidin-3-amine.} \\
Method: Post-work up 2d azetidine (500 mg, 1.37 mmol) was stirred at refluxing in acetonitrile (20 mL), after 4 hours acetonitrile was removed and benzylamine (5 mL) was added and the mixture was left stirring for 24 h, solvent was removed \textit{in vacuo} and flash chromatography (silica) to deliver pyrrolidine 6, yield (2 steps) = 420 mg, 75%.

(7) \textit{3-(cis-1-Benzyl-4-\{\{4-phenyl-1H-1,2,3-triazol-1-yl\}methyl\}azetidin-2-yl\}pyridine.} \\
Method: Post-work up 2d azetidine (500 mg, 1.37 mmol) and sodium azide (178 mg, 2.74 mmol) were dissolved in DMF (20 mL) and were stirred at room temperature for 16 hours. Ethynylbenzene (140 mg, 1.37 mmol), copper(I) iodide (521 mg, 2.74 mmol) were added and the reaction mixture was stirred at room temperature for 16 hours. The solvent was removed \textit{in vacuo}, ethyl acetate was added and the resulting suspension was filtered through Celite to remove the inorganic salts. The filtrate was concentrated under reduced pressure and the product was purified by flash chromatography.
Yield (2 steps) = 303 mg 46%. IR 3029, 2915, 2850, 1578, 1454, 1427, 1383, 1311, 1222, 1178; 1H NMR (δ; 500 MHz, CDCl3): 1.82 (1H, q, J = 10.0, PyCHCHH), 2.56 (1H, q, J = 10.0, PyCHCHH), 3.60 (1H, d, J = 10.0, NCHHPh), 3.74 (1H, m, NCHCH2N), 3.77 (1H, d, J = 10.0, NCHPh), 4.08 (1H, dd, J = 12.5 & 5.0, NCHCH/HN), 4.15 (1H, m, PyCHCH2), 4.36 (1H, d, J = 15.0, NCHCH/HN), 7.10 (1H, t, J = 10.0, ArH), 7.27 (1H, t, J = 10.0, ArH), 7.30 (1H, m, PyH), 7.29 (2H, d, J = 5.0, ArH), 7.31 (2H, t, J = 10.0, ArH), 7.37 (1H, t, J = 10.0, ArH), 7.47 (2H, t, J = 10.0, ArH), 7.59 (1H, d, J = 5.0, ArH), 7.62 (1H, s, CH3), 7.81 (2H, d, J = 10.0), 8.35 (2H, br, PyH). 13C{1H} NMR (δ; 100 MHz, CDCl3): 28.97 (CH2), 52.54 (CH2), 60.75 (CH), 60.75 (CH2), 61.75 (CH), 121.84 (CH), 123.64 (CH), 125.20 (CH), 125.22 (CH), 127.77 (CH), 128.03 (CH), 128.58 (CH), 128.83 (CH), 129.39 (CH), 130.06 (C), 137.00 (C), 137.20 (C), 146.70 (C), 147.80 (CH), 148.40 (CH). High-resolution MS calcd for formula C24H23N5Na: 404.1851; found: 404.1839.

(8) 3-(trans-1-Benzyl-4-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidin-2-yl)pyridine.

Method: Post-work up 2d azetidine (110 mg, 0.3 mmol) was heated at 70 °C in DMF (20 mL) for 4h, sodium azide (30 mg, 0.45 mmol) was added and the mixture was stirred at room temperature for 16 hours. Ethynylbenzene (32 mg, 0.3 mmol), copper(I) iodide (115 mg, 0.6 mmol) were added and the reaction mixture was heated at 80 °C for 4 hours. The solvent was removed in vacuo, ethyl acetate was added and the resulting suspension was filtered through Celite to remove the inorganic salts. The filtrate was concentrated under reduced pressure and the product was purified by flash chromatography. Yield (2 steps)= 86 mg, 57%. IR 3127, 3026, 2920, 2822, 1579, 1495, 1481, 1455, 1428, 1375, 1322, 1289, 1229, 1178, 1160; 1H NMR (δ; 300 MHz, CDCl3): 2.43(1H, dt, J = 15.0 & 9.0, PyCHCHH), 2.78 (1H, m, PyCHCHH), 2.86 (1H, dd, J = 9.0 & 6.0, CH/HN3), 3.29 (1H, d, J = 15.0, NCHHPh), 3.71 (1H, t, J = 9.0, CHHN3), 3.86 (1H, d, J = 12.0, NCHPh), 4.07 (1H, t, J = 9.0, PyCHCH2), 5.21 (1H, m, NCHCH2N), 7.33 (9H, m, ArH), 7.75 (1H, s, CH3), 7.81 (2H, d, J = 9.0, ArH), 7.87 (1H, d, J = 6.0, ArH), 8.61 (1H, br, PyH), 8.78 (1H, br, PyH), 13C{1H} NMR (δ; 100 MHz, CDCl3): 842.30 (CH2), 56.20 (CH2), 57.82 (CH), 59.42 (CH2), 65.45 (CH), 118.87 (CH), 125.17(CH), 127.36 (CH), 128.25 (CH), 128.45 (CH), 128.65 (CH), 128.87 (CH), 130.47 (C), 135.15 (CH), 137.93 (C), 147.87 (C), 149.29(CH), 149.57(CH) (quat C=Ctriazole not observed). High-resolution MS calcd for formula C24H23N5Na:404.1851; found: 404.1839.
To confirm stereochemistry nOe experiments were performed, revealing a *trans* substitution arrangement about the pyrrolidine ring, suggesting compound 2d, formed *in situ* is cleanly converted via an Sn2 mechanism to the corresponding azide which is subsequently converted to the corresponding traizole:

That H3 and H5 display nOe between different protons on the same methylene carbons (corresponding to H2a&b and H4a&b) is convincing evidence of *trans* geometry. Also, no nOe between H3 and H5 was observed.

trans-8
NMR Spectra

1H NMR Spectrum of 2a
13C\text{1H} NMR Spectrum (Pendant) of 2a
1H NMR Spectrum of 2b
13C{H} NMR Spectrum (Pendant) 2b
1H NMR Spectrum of 2c
$^{13}\text{C}^1\text{H}$ NMR Spectrum (Pendant) of 2c
1H NMR Spectrum of 2d (Post-Work Up)
1H NMR Spectrum of 2d (After Flash Chromatography)
13C{¹H} NMR Spectrum (Pendant) of 2d
1H NMR Spectrum of 2e
13C{\(1\)}H NMR Spectrum (Pendant) of 2e
$\text{H NMR Spectrum of 2f}$
13C1H NMR Spectrum of 2f

- 150.481
- 137.197
- 129.294
- 128.290
- 127.566
- 123.514
- 77.305
- 76.986
- 62.642
- 60.905
- 35.292
- 12.054

![Chemical Structure](image)
1H NMR Spectrum of 2g
13C1H NMR Spectrum (Pendant) of 2g
1H NMR Spectrum of 2h
13C-1H NMR Spectrum (Pendant) of 2h
1H NMR Spectrum of 3c
13C{H} NMR Spectrum of 3c
1H NMR Spectrum of 3d

The existence of rotamers broadening some peaks cannot be denied at this stage, no dynamics arrested down to -60 °C
13C1H NMR Spectrum (Pendant) of 3d
1H NMR Spectrum of 3e
$^{13}\text{C}^1\text{H}$ NMR Spectrum (Pendant) of 3e
1H NMR Spectrum of 4

![NMR Spectrum Image]
13C(1H) NMR Spectrum (Pendant) of 4
1H NMR Spectrum of 5
$^{13}\text{C}^1\text{H}$ NMR Spectrum (Pendant) of 5
1H NMR Spectrum of 6
1H NMR Spectrum of 7

The existence of rotamers broadening some peaks cannot be denied at this stage, no dynamics arrested down to -60 °C
13C1H NMR Spectrum of 7
\(^1\)H NMR Spectrum of 8

The existence of rotamers broadening some peaks cannot be denied at this stage, no dynamics arrested down to -60 °C
13C(1H) NMR Spectrum (Pendant) of 8
nOe experiment confirming *trans* geometry of compound 8
X-Ray Crystallographic Information

Single Crystal Diffraction Data for cis-2c

C$_{18}$H$_{20}$INO, $M_r = 393.25$, light brown crystal, crystal dimensions: 0.70 x 0.45 x 0.12 mm, triclinic, space group: $P1$, $a = 10.6159$ (3), $b = 12.3314$ (3), $c = 13.4921$ (3) Å, $\alpha = 81.7569$ (15)°, $\beta = 74.4479$ (14)°, $\gamma = 81.2906$ (14)°, $V = 1672.13$ (7) Å3, $Z = 4$, $Z' = 2$, $\rho_{calc} = 1.562$ Mg/m3, $\mu = 1.914$ mm$^{-1}$, $\lambda_{Mo-K\alpha} = 0.71073$ Å, $T = 120$ (2) K, $2\theta_{max} = 27.50$°, 35064 reflections measured, 6641 observed reflections, $R_1 = 0.0366$ (observed reflections), $wR = 0.1022$ (all data), GOF = 1.149, largest diff. peak and hole: 1.500 and -1.591 e Å$^{-3}$.

Single Crystal Diffraction Data for cis-3c

C$_{18}$H$_{20}$IN, $M_r = 377.25$, colourless crystal, crystal dimensions: 0.32 x 0.16 x 0.03 mm, monoclinic, space group: $P2_1/n$, $a = 6.9828$ (2), $b = 9.0924$ (5), $c = 25.8129$ (12) Å, $\beta = 93.829$ (3)°, $V = 1635.21$ (13) Å3, $Z = 4$, $Z' = 1$, $\rho_{calc} = 1.532$ Mg/m3, $\mu = 1.949$ mm$^{-1}$, $\lambda_{Mo-K\alpha} = 0.71073$ Å, $T = 120$ (2) K, $2\theta_{max} = 27.48$°, 18336 reflections measured, 2380 observed reflections, $R_1 = 0.0503$ (observed reflections), $wR = 0.1240$ (all data), GOF = 1.057, largest diff. peak and hole: 1.462 and -1.456 e Å$^{-3}$.

General Remarks

The datasets were measured on a Bruker CCD diffractometer at the window of a Bruker FR591 rotating anode. The data collections were driven by COLLECT1 and processed by DENZO.2 Absorption corrections were applied using SADABS.3 The structure was solved using ShelXS-974 and refined by a full-matrix least-squares procedure on F^2 in ShelXL-97.4 All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were added at calculated positions and refined by use of a riding model with isotropic displacement parameters based on the equivalent isotropic displacement parameter (U_{eq}) of the parent atom. The CIFs for the crystal structure of 2c and cis-3c are included as ESI to this report.

References of Crystallography Section