Supporting Information

Hofmann Rearrangement of Carboxamides Mediated by Hypervalent Iodine Species Generated in situ from Iodobenzene and Oxone: Reaction Scope and Limitation

Aleksandra A. Zagulyaeva, Christopher T. Banek, Mekhman S. Yusubov, and Viktor V. Zhdankin*

Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, 55812, USA and The Siberian State Medical University and The Tomsk Polytechnic University, 634050 Tomsk, Russia

vzhdanki@d.umn.edu

Contents:

1. General Methods .. S1
2. Experimental procedures and characterization data S2
3. NMR spectra of compounds S7
4. References ... S24

General. All commercial reagents were ACS reagent grade and used without further purification. NMR spectra were recorded at 300 and 500 MHz (^1H NMR) and 75 MHz (^13C NMR). Chemical shifts (δ) are reported in parts per million. GC-MS analysis was carried out with a HP 5890A Gas Chromatograph using a 5970 Series mass selective detector.
Preparation of benzylamine hydrochloride 3•HCl from 2-phenylacetamide 2 via Hofmann rearrangement.

\[
\begin{align*}
\text{2} & \xrightarrow{1) \text{Phl (1 mol-equiv), Oxone® (2 mol-equiv)}} \text{CH}_3\text{CN-H}_2\text{O (1:1), rt, 7 h}} \rightarrow \text{3-HCl} \\
\text{NH}_2\text{-HCl}
\end{align*}
\]

To a mixture of Oxone® (1.23 g, 2 mmol) and iodosobenzene (0.204 g, 1 mmol) in CH\textsubscript{3}CN/H\textsubscript{2}O (6 mL, 1:1, v/v), 2-phenylacetamide 2 (0.135 g, 1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7 h (the reaction was monitored by GC-MS). After completion of the reaction, the reaction mixture was filtered under reduced pressure. The insoluble residue (mainly containing inorganic salts) was washed with CH\textsubscript{3}CN (5 mL) and discarded. The combined filtrate was mixed with HCl (15 mL, 20% aqueous solution), and the mixture was washed with ether (10 mL) to remove all non-polar impurities. The aqueous layer was concentrated at reduced pressure to give a sticky solid, which was thoroughly dried in vacuum. Crystallization from ethanol-ether afforded 0.136 g (95%) of benzylamine hydrochloride 3•HCl as a slightly yellow crystalline solid, mp 253-255 °C (lit.1, mp 258-260 °C). 1H NMR 300 MHz (CD\textsubscript{3}OD): δ 4.12 (br s, 2H, -CH\textsubscript{2}CH\textsubscript{2}), 7.40 -7.48 (m, 5H, Ph).

Preparation of (±)-α-phenylpropylamine 5 from 2-phenylbutyramide 4

\[
\begin{align*}
\text{CONH}_2 & \xrightarrow{\text{Phl (1 mol-equiv), Oxone® (2 mol-equiv)}} \text{CH}_3\text{CN-H}_2\text{O (1:1), rt}} \rightarrow \text{NH}_2 \text{5}
\end{align*}
\]

To the mixture of Oxone® (1.23 g, 2 mmol) and iodosobenzene (0.204 g, 1 mmol) in CH\textsubscript{3}CN/H\textsubscript{2}O (6 mL, 1:1, v/v), 2-phenylbutyramide 4 (0.163 g, 1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7 h (the reaction was monitored by GC-MS). After completion of the reaction, the reaction mixture was diluted with H\textsubscript{2}O (10 mL), and extracted with CHCl\textsubscript{3} (3x10 mL). The organic phase was separated, and dried over Na\textsubscript{2}SO\textsubscript{4} (anhydrous). Evaporation of CHCl\textsubscript{3} under reduced pressure afforded 0.115 g (85%) of (±)-α-phenylpropylamine 5 as a pale yellow oil. 1H NMR 300 MHz (CDCl\textsubscript{3}): δ 0.87 (t, J=7.5 Hz, 3H, -CH\textsubscript{2}CH\textsubscript{3}), 1.61 (br s, 2H, NH\textsubscript{2}), 1.67-1.72 (m, 2H, -CH\textsubscript{2}CH\textsubscript{3}), 3.80 (t, J=6.9 Hz, 1H, -CH\textsubscript{2}-), 7.31-7.33 (m, 5H, Ph). The product was identical to a commercially available sample (Aldrich) according to NMR and GC-MS data.
General procedure for preparation of carbamates 7a-k from amides 6a-k via Hofmann rearrangement.

\[
R - ONH_2 \xrightarrow{\text{Phl (1 mol-equiv), Oxone (2 mol-equiv)}} \xrightarrow{\text{CH}_3OH, \text{rt}} R' - NO
\]

To the mixture of Oxone® (2 mol-equiv) and iodobenzene (1 mol-equiv) in MeOH (5 mL), an appropriate amide 6a-k (1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7-12 h (the reaction was monitored by GC-MS). After completion of the reaction, the solvent was evaporated under vacuum. The resulting residue was diluted with H₂O (10 mL), and extracted with EtOAc (3x10 mL). The organic phase was separated, and dried over MgSO₄ (anhydrous). Evaporation of EtOAc under reduced pressure afforded a final product which in case of crystalline products was additionally purified by recrystallization from CHCl₃/hexane.

Methyl N-isopropylcarbamate 7c.

![Methyl N-isopropylcarbamate](image)

Reaction of isobutyramide 6c (0.087 g, 1 mmol) according to the general procedure afforded 0.111 g (95%) of product 7c, isolated as an oil. ¹H NMR 500 MHz (CDCl₃): δ 1.15 (d, J=6.3 Hz, 6H, 2CH₃), 3.65 (s, 3H, COOC₃H₃), 3.81 (br s, 1H, CH), 4.55 (br s, 1H, NH). EI-MS m/z (relative intensity, %): 117 [M]+ (<5), 102 [M-CH₃]+(100), 86 [M-CH₂O]+(5), 70 [C₅H₄NO]+ (6), 59 [C₂H₅O₂]+ (26), 58 [C₃H₈N]+ (50).

Methyl N-cyclobutylcarbamate 7d.

![Methyl N-cyclobutylcarbamate](image)

Reaction of cyclobutanecarboxamide 6d (0.099 g, 1 mmol) according to the general procedure afforded 0.119 g (92%) of product 7d, isolated as an oil. ¹H NMR 300 MHz (CDCl₃): δ 1.62-1.71 (m, 2H), 1.81-1.88 (m, 2H), 2.27-2.32 (m, 2H), 3.64 (s, 3H, COOCH₃), 4.13-4.18 (m, 1H, CH), 4.89 (br s, 1H, NH). EI-MS m/z (relative intensity, %): 128 [M-1]+ 10), 110 (16), 95 [C₅H₅NO]+ (100), 81 [C₅H₇N]+ (13), 69 [C₄H₇N]+ (43), 55[C₄H₇]+ (32).

Methyl N-cyclohexylcarbamate 7e.

![Methyl N-cyclohexylcarbamate](image)

Reaction of cyclohexanecarboxamide 6e (0.127 g, 1 mmol) according to the general procedure afforded 0.140 g (89%) of product 7e, isolated as a slightly yellow microcrystalline solid, mp 73.5-74.5 °C (lit.², mp 72-75 °C). ¹H NMR 500 MHz
(CDCl₃): δ 1.09-1.20 (m, 3H), 1.31-1.38 (m, 2H), 1.58-1.62 (m, 1H), 1.67-1.72 (m, 2H), 1.92-1.94 (m, 2H), 3.48 (br s, 1H, CH₃), 3.65 (s, 3H, COOCH₃), 4.56 (br s, 1H, NH).

Methyl N-(1-adamantanyl)carbamate 7f.

![Structure of Methyl N-(1-adamantanyl)carbamate](image)

Reaction of 1-adamantanecarboxamide 6f (0.179 g, 1 mmol) according to the general procedure afforded 0.188 g (90%) of product, isolated as a microcrystalline solid, mp 118-120 °C (lit.3, mp 120 °C). ¹H NMR 300 MHz (CDCl₃): δ 1.67 (s, 6H), 1.93 (s, 6H), 2.07 (s, 3H), 3.60 (s, 3H, COOCH₃), 4.54 (br s, 1H, NH).

Methyl (1-Boc-pyrrolidin-2-yl)carbamate 7g.

![Structure of Methyl (1-Boc-pyrrolidin-2-yl)carbamate](image)

Reaction of 1-Boc-L-prolinamide 6g (0.214 g, 1 mmol) according to the general procedure afforded 0.183 g (75%) of product 7g, isolated as an oil. ¹H NMR 300 MHz (CDCl₃): δ 1.44 (s, 9H, COOC(CH₃)₃), 1.81-1.84 (m, 2H), 2.34-2.38 (m, 2H), 3.16 (br s, 2H), 3.68 (s, 3H, COOCH₃), 4.63 (br s, 2H, NH and CH). ¹³C NMR 75 MHz (CDCl₃): δ 21.02, 28.62 (COOC(CH₃)₃), 33.21, 46.74, 51.88 (COOCH₃), 79.43, 83.04, 174.02, 179.51.

Methyl N-benzylcarbamate 7h.

![Structure of Methyl N-benzylcarbamate](image)

Reaction of 2-phenylacetamide 6h (0.135 g, 1 mmol) according to the general procedure afforded 0.160 g (97%) of product 7h, isolated as a microcrystalline solid, mp 63-65 °C (lit.4, mp 64-65 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.69 (s, 3H, COOCH₃), 4.36 (s, 2H, -CH₂-), 5.09 (br s, 1H, NH), 7.28-7.34 (m, 5H, Ph).

Methyl N-(4-methylbenzyl)carbamate 7i.

![Structure of Methyl N-(4-methylbenzyl)carbamate](image)

Reaction of 2-(p-tolyl)acetamide 6i (0.149 g, 1 mmol) according to the general procedure afforded 0.166 g (93%) of product 7i, isolated as a white microcrystalline solid, mp 68-70 °C. ¹H NMR 300 MHz (CDCl₃): δ 2.33 (s, 3H, -CH₃), 3.69 (s, 3H, COOCH₃), 4.32 (s, 2H, -CH₂-), 4.98 (br s, 1H, NH), 7.12-7.19 (m, 4Harom.).

Methyl N-(p-methoxybenzyl)carbamate 7j.

![Structure of Methyl N-(p-methoxybenzyl)carbamate](image)

Reaction of 2-(4-methoxyphenyl)acetamide 6j (0.165 g, 1 mmol) according to the general procedure afforded 0.185 g (95%) of product 7j, isolated as a white microcrystalline solid, mp 73-74 °C (lit.5, mp 73-74 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.68 (s, 3H, COOCH₃), 3.78 (s, 3H, -OCH₃), 4.28 (br s, 2H, -CH₂-), 4.97
Methyl N-[(1-naphthyl)methyl]carbamate 7k.

Reaction of 1-naphthaleneacetamide 6k (0.185 g, 1 mmol) according to the general procedure afforded 0.200 g (93%) of product, isolated as pale yellow microcrystalline solid, mp 84-86 °C (lit.⁶, mp 84-88 °C). ¹H NMR 300 MHz (CDCl₃): δ 3.68 (s, 3H, COOC₂H₃), 4.79 (br s, 2H, -CH₂-), 5.09 (br s, 1H, NH), 7.39-7.41 (m, 2H, ArH), 7.46-7.52 (m, 2H, ArH), 7.77-7.78 (m, 1H, ArH), 7.84-7.86 (m, 1H, ArH), 7.96-8.01 (m, 1H, ArH).

General procedure for preparation of 1,4-benzoquinones 10a-e from amides 8a-e.

To the mixture of Oxone® (2 mol-equiv) and iodobenzene (1 mol-equiv) in CH₃CN/H₂O (6 mL, 1:1, v/v), an appropriate amide 8a-e (1 mmol) was added under stirring at room temperature. The reaction mixture was stirred at room temperature for 7-12 h (the reaction was monitored by GC-MS). After completion of the reaction, the reaction mixture was diluted with H₂O (10 mL), and extracted with CHCl₃ (3x10 mL). The organic phase was separated, and dried over Na₂SO₄ (anhydrous). Evaporation of CHCl₃ under reduced pressure afforded a pure product 10.

1,4-Benzoquinone 10a.

Reaction of benzamide 8a (0.121 g, 1 mmol) according to the general procedure afforded 0.106 g (98%) of product 10a, isolated as an orange microcrystalline solid, mp 115-116 °C (lit.,⁷ mp 116 °C). ¹H NMR 300 MHz (CDCl₃): δ 6.78 (s, 4H). The same product was obtained in reaction with 4-methoxybenzamide 8e (0.102 g, 94%).
2-Methyl-1,4-benzoquinone 10b.

Reaction of \(o \)-toluamide 8b (0.135 g, 1 mmol) according to the general procedure afforded 0.122 g (100%) of product 10b, isolated as a yellow microcrystalline solid, mp 68-69 °C (lit.\(^7\), mp 69 °C). \(^1\)H NMR 300 MHz (CDCl\(_3\)): \(\delta \) 2.03 (s, 3H, -CH\(_3\)), 6.59 (s, 1H), 6.65-6.76 (m, 2H).

2-Chloro-1,4-benzoquinone 10c.

Reaction of 2-chlorobenzamide 8c (0.155 g, 1 mmol) according to the general procedure afforded 0.135 g (95%) of product 10c, isolated as a yellowish microcrystalline solid, mp 54-56 °C (lit.\(^7\), mp 55-56 °C). \(^1\)H NMR 300 MHz (CDCl\(_3\)): \(\delta \) 6.80 (d, \(J = 9.8 \) Hz, 1H), 6.91 (d, \(J = 9.8 \) Hz, 1H), 6.99 (s, 1H).

2-Methoxy-1,4-benzoquinone 10d.

Reaction of 3-methoxybenzamide 8d (0.151 g, 1 mmol) according to the general procedure afforded 0.134 g (97%) of product 10d, isolated as a slightly brown microcrystalline solid, mp 142-144 °C (lit.\(^7\), mp 144 °C). \(^1\)H NMR 300 MHz (CDCl\(_3\)): \(\delta \) 3.83 (s, 3H, -OCH\(_3\)), 5.95 (br s, 1H), 6.72 (br s, 2H).

4-Hydroxy-2,4,6-trimethylcyclohexa-2,5-dienone 10e.

Reaction of 2,4,6-trimethylbenzamide 8f (0.163 g, 1 mmol) according to the general procedure afforded product 10e, isolated as a semisolid mass which on recrystallization from EtOH/water yields pure crystalline product 0.144 g (95%), mp 44.5-45.5 °C (lit.\(^8\), mp 45-46 °C). \(^1\)H NMR 300 MHz (CDCl\(_3\)): \(\delta \) 1.43 (s, 3H, 4-CH\(_3\)), 1.86 (s, 6H, 2,6-CH\(_3\)), 6.62 (br s, 2H).
3. Copies of ^1H and ^{13}C NMR spectra
Benzylamine hydrochloride 3•HCl (300 MHz, CDCl$_3$)
(±)-α-Phenylpropylamine 5 (300 MHz, CDCl₃)
Methyl N-isopropylcarbamate 7c (500 MHz, CDCl₃)
Methyl N-cyclobutylcarbamate 7d (300 MHz, CDCl₃)
Methyl N-cyclohexylcarbamate 7e (500 MHz, CDCl₃)
Methyl N-(1-adamantanyl)carbamate 7f (300 MHz, CDCl₃)
Methyl (1-Boc-pyrrolidin-2-yl)carbamate 7g (300 MHz, CDCl₃)
Methyl (1-Boc-pyrrolidin-2-yl)carbamate 7g (75 MHz, CDCl₃)
Methyl N-benzylcarbamate 7h (300 MHz, CDCl₃)
Methyl N-(4-methylbenzyl)carbamate 7i (300 MHz, CDCl₃).
Methyl N-(p-methoxybenzyl)carbamate 7j (300 MHz, CDCl₃)
Methyl N-[(1-naphthyl)methyl]carbamate 7k (300 MHz, CDCl₃).
1,4-Benzooquinone 10a (300 MHz, CDCl₃)
2-Methyl-1,4-benzoquinone 10b (300 MHz, CDCl₃)
2-Chloro-1,4-benzoquinone 10c (300 MHz, CDCl₃)
2-Methoxy-1,4-benzoquinone 10d (300 MHz, CDCl₃).
4-Hydroxy-2,4,6-trimethylcyclohexa-2,5-dienone 10e (300 MHz, CDCl₃)
References

