Supporting Information Available

Visual Indicator for Surfactant Abundance in MS-Based Membrane and General Proteomics Applications

Chao-Jung Chen¹, Mei-Chun Tseng², Han-Jia Lin³, Ting-Wei Lin¹ and Yet-Ran Chen¹*
Supporting Information Figure S-1: LC-MS analysis of tryptic enolase in the presence 0.005% TX-114. Triton X-114 was observed in three LC retention time windows, which were (A) 17-24 min (B) 29-31 min and (C) 33-35 min.

Supporting Information Figure S-2: Base peak chromatograms for the LC-MS analysis of tryptic enolase in the presence of (A) 0% TX-114 (B) 0.0002% TX-114 (C) 0.0005% TX-114 and (D) 0.001% TX-114.

Supporting Information Figure S-3: Base peak chromatograms for the LC-MS analysis of tryptic enolase in the presence of (A) 0% SDS (B) 0.0002% SDS (C) 0.0005% SDS and (D) 0.001% SDS.

Supporting Information Figure S-4. VISA test for TX-114 extraction efficiency in the first wash solution. The 70 μL tube-gels were sliced in to 32, 16, 8 and 4 pieces, washed with (A) 25 mM ABC (B) 50% ACN and tested by the VISA test.

Supporting Information Figure S-5. Effect of gel slice number on protein recovery. Four 70 μL tube-gel samples containing about 5 μg Jurkat membrane protein were sliced into 4, 8, 16 and 32 pieces respectively and each of the samples was washed with 50% ACN four times. After the gel wash, the gel pieces from each of the samples were ground and loaded into the SDS-PAGE.

Supporting Information Table S-1: Identification of TX-114 Extracted Mouse Spermatogonza Membrane Proteins using Tube-Gel Protocol.

Supporting Information Table S-2: Identification of Jurkat T-Cell Proteins using In-Solution Digestion Protocol.