Supporting Information for

Graphene-Wrapped Fe$_3$O$_4$ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries

Guangmin Zhoua, Da-Wei Wangb, Feng Lia*, Lili Zhanga, Na Lia, Zhong-Shuai Wua, Lei Wena,
Gao Qing (Max) Lub, and Hui-Ming Chenga,*

aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China

bARC Centre of Excellence for Functional Nanomaterials, AIBN, The University of Queensland, St Lucia, Brisbane 4072, Australia

Figure S1. (a) SEM and (b) TEM images of spindle-shaped FeOOH with GNSs.
Figure S2. XRD profile of the hydrolyzate of FeCl$_3$·6H$_2$O and graphene dispersion.

Figure S3. Thermogravimetric result of GNS/Fe$_3$O$_4$ composite oxidation in air with a heating rate of 10 °C/min, showing the graphene content of 13.3 wt% (calculated from the weight loss of TG result plus the weight gain of Fe$_2$O$_3$ transformed from Fe$_3$O$_4$).
Figure S4. SEM image of bare Fe$_2$O$_3$ particles.

Figure S5. SEM image of commercial Fe$_3$O$_4$ particles.

Figure S6. Cycling performance of the GNS/Fe$_3$O$_4$ composite at a current density of 35 mA g$^{-1}$ for 85 cycles.