Supporting Information

Simple and Efficient Preparation of 2,5-Disubstituted Oxazoles via A Metal-Free-Catalyzed Cascade Cyclization

Changfeng Wan, Linfeng Gao, Qiang Wang, Jintang Zhang, and Zhiyong Wang*

Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
Fax: (+86) 551-360-3185
E-mail: zwang3@ustc.edu.cn

Table of Contents

General
Analytical and spectral data for compounds 3a-3x, 6
NMR Spectrum of compounds 3a-3x, 6

S2
S3-S11
S12-S36
Experimental Section

Materials and Methods: ^1H NMR and ^{13}C NMR were recorded on a Bruker AC-300 FT and Brucker AVANCE III 400 NMR spectrometer using TMS as internal reference. The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz respectively. HRMS was recorded on a Micromass UK LTD GCT spectrometer. Melting points were determined on a BeiJing Tech Instrument Co., LTD X-6 melting point apparatus and are uncorrected.

A general experimental procedure for simple and efficient preparation of 2,5-disubstituted oxazoles: To a DMF (1 mL) solution of aldehydes (0.2 mmol) were successively added 2-amino-1-phenylethanone hydrochloride (1a) (0.8 mmol), iodine (0.06 mmol), TBHP (0.3 mmol), NaHCO$_3$ (0.2 mmol). After the reaction mixture was stirred for 10 hours at 70 ºC, the reaction mixture was extracted with EtOAc, dried with Na$_2$SO$_4$. Then solvent was removed under reduced pressure and purified by silica gel column chromatography to afford the desired product.
2-(4-methoxyphenyl)-5-phenyloxazole (3a)

![Chemical Structure](image)

The pale yellow solid was obtained according to a general procedure (65% yield), mp, 97-99 °C, \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.07 (d, \(J = 9.0\) Hz, 2H), 8.07 (d, \(J = 7.5\) Hz, 2H), 7.48-7.42 (m, 3H), 7.34 (d, \(J = 7.2\) Hz, 1H), 7.01 (d, \(J = 9.0\) Hz, 1H), 3.89 (s, 3H), \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 161.41, 150.75, 128.91, 128.23, 127.99, 124.07, 123.06, 120.29, 114.27, 55.39. HRMS calc. C\(_{16}\)H\(_{13}\)NO\(_2\) (M\(^+\)): 251.0946, Found: 251.0942.

2-(3-methoxyphenyl)-5-phenyloxazole (3b)

![Chemical Structure](image)

The yellow solid was obtained according to a general procedure (88% yield), mp, 79-81 °C, \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.69 (d, \(J = 8.7\) Hz, 2H), 7.63 (s, 1H), 7.44-7.00 (m, 6H), 6.99 (d, \(J = 6.0\) Hz, 1H), 3.87 (s, 3H), \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.05, 159.93, 151.32, 129.92, 128.93, 128.65, 128.46, 127.99, 124.22, 123.43, 118.78, 116.79, 111.02, 55.43. HRMS calc. C\(_{16}\)H\(_{13}\)NO\(_2\) (M\(^+\)): 251.0946, Found: 251.0941.

5-phenyl-2-p-tolyloxazole (3c)

![Chemical Structure](image)

The pale yellow solid was obtained according to a general procedure (87% yield), mp, 72-73 °C, \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.98 (d, \(J = 6.3\) Hz, 2H), 7.68 (d, \(J = 6.6\) Hz, 2H), 7.43-7.25 (m, 6H), 2.38 (s, 3H), \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.41, 150.96, 140.62, 129.54, 128.91, 128.31, 128.15, 126.28, 124.81, 124.15, 123.37, 21.54. HRMS calc. C\(_{13}\)H\(_9\)NO\(_2\) (M\(^+\)): 235.0997, Found: 235.0992.
5-phenyl-2-m-tolyloxazole (3d)

The pale yellow solid was obtained according to a general procedure (85% yield), mp, 96-99 °C,
\[
{^1}H\text{ NMR (400 MHz, CDCl}_3\] \(\delta\) 7.92-7.88 (m, 2H), 7.70 (d, \(J = 7.2\) Hz, 2H), 7.43-7.40 (m, 3H),
7.37-7.30 (m, 2H), 7.24 (d, \(J = 5.7\) Hz, 1H), 2.42 (s, 3H), \(\text{^13}C\text{ NMR (100 MHz, CDCl}_3\] \(\delta\) 161.35, 151.19, 138.58, 131.17, 128.93, 128.74, 128.39, 128.09, 127.37, 126.89, 124.20, 123.48, 123.42, 21.39. HRMS calc. C\(_{13}\)H\(_9\)NO\(_2\) (M\(^+\)): 235.0997, Found: 235.0993.

5-phenyl-2-o-tolyloxazole (3e)

The pale yellow solid was obtained according to a general procedure (90% yield), mp, 86-87 °C,
\[
{^1}H\text{ NMR (400 MHz, CDCl}_3\] \(\delta\) 8.07 (d, \(J = 8.4\) Hz, 1H), 7.69 (d, \(J = 6.3\) Hz, 2H), 7.47 (s, 1H),
7.44-7.40 (m, 2H), 7.34-7.28 (m, 4H), 2.75 (s, 3H), \(\text{^13}C\text{ NMR (100 MHz, CDCl}_3\] \(\delta\) 161.63, 150.88, 137.34, 131.73, 129.97, 128.97, 128.82, 128.39, 128.14, 126.47, 126.05, 124.21, 123.19, 22.15. HRMS calc. C\(_{13}\)H\(_9\)NO\(_2\) (M\(^+\)): 235.0997, Found: 235.0995.

2-(5-phenyloxazol-2-yl)phenol (3f)

The white solid was obtained according to a general procedure (91% yield), mp, 107-109 °C, \(\text{^1}H\text{ NMR (300 MHz, CDCl}_3\] \(\delta\) 11.15 (s, 1H), 7.90 (d, \(J = 7.8\) Hz, 1H), 7.69 (d, \(J = 7.5\) Hz, 2H),
7.46-7.32 (m, 5H), 7.07 (d, \(J = 8.1\) Hz, 1H), 6.96 (t, \(J = 7.5\) Hz, 1H), \(\text{^13}C\text{ NMR (75 MHz, CDCl}_3\] \(\delta\) 160.88, 157.43, 150.14, 132.31, 129.04, 128.82, 127.48, 125.88, 124.33, 121.13, 119.48, 117.26, 111.12. HRMS calc. C\(_{13}\)H\(_9\)NO\(_2\) (M\(^+\)): 237.0790, Found: 237.0795.
2,5-diphenyloxazole (3g)

The white solid was obtained according to a general procedure (77% yield), mp, 70-71 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.14 (dd, J = 7.8, 2.4 Hz, 2H), 7.74 (d, J = 7.5 Hz, 2H), 7.54-7.44 (m, 5H), 7.36 (t, J = 7.2 Hz, 1H), 13C NMR (75 MHz, CDCl$_3$) δ 151.30, 130.35, 128.96, 128.85, 128.47, 128.06, 127.50, 126.32, 124.23, 123.49. HRMS calc. C$_{13}$H$_9$NO$_2$ (M$^+$): 221.0841, Found: 221.0845.

2-(4-chlorophenyl)-5-phenyloxazole (3h)

The pale yellow solid was obtained according to a general procedure (79% yield), mp, 109-110 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.02 (d, J = 7.8 Hz, 2H), 7.68 (d, J = 7.5 Hz, 2H), 7.45-7.41 (m, 5H), 7.33 (t, J = 7.2 Hz, 1H), 13C NMR (75 MHz, CDCl$_3$) δ 160.22, 151.55, 136.42, 129.16, 128.99, 128.63, 127.83, 127.54, 125.95, 124.25, 123.56. HRMS calc. C$_{15}$H$_{10}$ClNO (M$^+$): 255.0451, Found: 255.0447.

2-(3-chlorophenyl)-5-phenyloxazole (3i)

The pale yellow solid was obtained according to a general procedure (75% yield), mp, 107-109 °C, 1H NMR (400 MHz, CDCl$_3$) δ 8.06 (s, 1H), 7.98-7.95 (m, 1H), 7.68 (d, J = 5.4, 2H), 7.45-7.31 (m, 6H), 13C NMR (100 MHz, CDCl$_3$) δ 159.75, 151.75, 134.94, 130.28, 130.14, 129.05, 128.98, 128.70, 127.72, 126.28, 124.34, 124.30, 123.56. HRMS calc. C$_{15}$H$_{10}$ClNO (M$^+$): 255.0451, Found: 255.0456.
2-(2-chlorophenyl)-5-phenyloxazole (3j)

The pale yellow solid was obtained according to a general procedure (82% yield), mp, 82-84 °C, 1H NMR (400 MHz, CDCl$_3$) δ 8.10-8.07 (m, 1H), 7.72 (d, $J = 6.3$ Hz, 2H), 7.52-7.49 (m, 2H), 7.44-7.31 (m, 5H), 13C NMR (100 MHz, CDCl$_3$) δ 159.00, 151.77, 132.36, 131.36, 130.97, 130.75, 128.98, 128.66, 127.82, 126.89, 126.12, 124.38, 123.24. HRMS calc. C$_{15}$H$_{10}$ClNO (M$^+$): 255.0451, Found: 255.0453.

2-(4-fluorophenyl)-5-phenyloxazole (3k)1

The pale yellow solid was obtained according to a general procedure (81% yield), mp, 81-82 °C, 1H NMR (400 MHz, CDCl$_3$) δ 8.08-8.06 (m, 2H), 7.68 (d, $J = 6.3$ Hz, 4H), 7.44-7.31 (m, 3H), 7.36-7.32 (m, 1H), 7.17-7.13 (m, 2H), 13C NMR (100 MHz, CDCl$_3$) δ 165.31, 162.81, 160.32, 151.36, 128.95, 128.41, 128.35, 127.91, 124.18, 123.84, 123.81, 123.38, 116.13, 115.91. HRMS calc. C$_{15}$H$_{10}$FNO (M$^+$): 239.0746, Found: 239.0742.

2-(4-bromophenyl)-5-phenyloxazole (3l)2

The pale yellow solid was obtained according to a general procedure (76% yield), mp, 113-115 °C, 1H NMR (400 MHz, CDCl$_3$) δ 7.97-7.92 (m, 2H), 7.68 (d, $J = 6.3$ Hz, 4H), 7.67-7.50 (m, 2H), 7.44-7.31 (m, 4H), 13C NMR (100 MHz, CDCl$_3$) δ 160.25, 151.57, 132.09, 128.98, 128.63, 127.79, 127.71, 126.34, 124.78, 124.25, 123.56. HRMS calc. C$_{15}$H$_{10}$BrNO (M$^+$): 298.9946, Found: 298.9941.
5-phenyl-2-(4-(trifluoromethyl)phenyl)oxazole (3m)

The white solid was obtained according to a general procedure (65% yield), m.p., 153-156°C, 1H NMR (400 MHz, CDCl$_3$) δ 8.18 (d, $J = 8.1$ Hz, 2H), 7.71 (d, $J = 8.4$ Hz, 4H), 7.52-7.41 (m, 3H), 7.35 (t, $J = 7.2$ Hz, 1H), ^{13}C NMR (100 MHz, CDCl$_3$) δ 159.71, 152.13, 130.58, 129.31, 129.03, 128.86, 127.65, 126.46, 125.92, 125.87, 125.82, 125.78, 124.38, 123.80. HRMS calc. C$_{16}$H$_{10}$F$_3$NO (M$^+$): 289.0714, Found: 289.0711.

5-phenyl-2-(2-(trifluoromethyl)phenyl)oxazole (3n)

The white solid was obtained according to a general procedure (64% yield), mp, 147-151 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.17 (s, 1H), 7.85-7.35 (m, 9H), ^{13}C NMR (75 MHz, CDCl$_3$) δ 158.98, 152.65, 131.95, 131.34, 130.94, 130.18, 129.03, 128.77, 127.73, 127.15, 127.07, 126.99, 126.92, 126.04, 125.51, 124.36, 123.35, 121.89. HRMS calc. C$_{16}$H$_{10}$F$_3$NO (M$^+$): 289.0714, Found: 289.0709.

2-(2-nitrophenyl)-5-phenyloxazole (3o)

The yellow solid was obtained according to a general procedure (82% yield), mp, 116-119 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.09 (d, $J = 9.0$ Hz, 2H), 7.75 (d, $J = 7.8$ Hz, 1H), 7.74-7.61 (m, 4H), 7.56-7.35 (m, 4H), ^{13}C NMR (75 MHz, CDCl$_3$) δ 156.39, 152.75, 148.65, 131.97, 130.93, 130.14, 129.04, 127.32, 124.46, 123.81, 123.65, 120.71. HRMS calc. C$_{15}$H$_{10}$N$_2$O$_3$ (M$^+$): 266.0691, Found: 266.0697.
4-(5-phenyloxazol-2-yl)benzonitrile (3p)¹

![Chemical structure of 4-(5-phenyloxazol-2-yl)benzonitrile (3p)](image)

The pale yellow solid was obtained according to a general procedure (87% yield), mp, 173-175 °C, \(^{1}H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 8.21 (d, \(J = 8.4\) Hz, 2H), 7.79-7.73 (m, 4H), 7.51-7.46 (m, 3H), 7.39 (t, \(J = 7.2\) Hz, 1H), \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) \(\delta\) 159.23, 152.56, 132.73, 131.19, 129.15, 127.46, 126.98, 124.51, 124.14, 118.47, 113.52. HRMS calc. C\(_{16}\)H\(_{10}\)N\(_2\)O (M\(^+\)): 246.0793, Found: 246.0787.

(E)-5-phenyl-2-styryloxazole (3q)³

![Chemical structure of (E)-5-phenyl-2-styryloxazole (3q)](image)

The light yellow solid was obtained according to a general procedure (76% yield), m.p., 152-153° C, \(^{1}H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.67 (d, \(J = 7.2\) Hz, 2H), 7.58-7.52 (m, 3H), 7.44-7.29 (m, 6H), 6.97 (d, \(J = 16.5\) Hz, 1H), \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) \(\delta\) 161.14, 150.95, 135.91, 135.63, 129.20, 128.97, 128.93, 128.50, 127.97, 127.23, 124.26, 123.72, 113.91. HRMS calc. C\(_{17}\)H\(_{13}\)NO (M\(^+\)): 247.0997, Found: 247.0993.

2-(naphthalen-2-yl)-5-phenyloxazole (3r)¹

![Chemical structure of 2-(naphthalen-2-yl)-5-phenyloxazole (3r)](image)

The pale yellow solid was obtained according to a general procedure (75% yield), mp, 103-105 °C, \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 9.32 (d, \(J = 7.2\) Hz, 1H), 8.27 (d, \(J = 6.3\) Hz, 1H), 7.92 (d, \(J = 6.3\) Hz, 1H), 7.86 (d, \(J = 6.3\) Hz, 1H), 7.73 (d, \(J = 6.9\) Hz, 2H), 7.64 (d, \(J = 6.3\) Hz, 1H), 7.56-7.52 (m, 3H), 7.45-7.41 (m, 2H), 7.33 (d, \(J = 5.7\) Hz, 1H), \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 161.09, 151.02, 134.04, 131.22, 130.24, 129.01, 128.63, 128.54, 128.06, 127.79, 127.62, 126.34, 126.25, 125.02, 124.37, 123.97, 123.50. HRMS calc. C\(_{19}\)H\(_{13}\)NO (M\(^+\)): 271.0997, Found: 271.0993.
5-phenyl-2-(thiophen-2-yl)oxazole (3s)

The pale yellow solid was obtained according to a general procedure (75% yield), mp, 59-61 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.18 (d, $J = 8.1$ Hz, 2H), 7.71 (d, $J = 8.4$ Hz, 4H), 7.73-7.62 (m, 3H), 7.52-7.12 (m, 5H), 7.11 (t, $J = 4.5$ Hz, 1H), 13C NMR (75 MHz, CDCl$_3$) δ 157.42, 150.86, 133.31, 128.95, 128.48, 128.28, 127.99, 127.82, 127.64, 124.19, 123.35. HRMS calc. C$_{13}$H$_9$NOS (M$^+$): 227.0405, Found: 227.0409.

2-(furan-2-yl)-5-phenyloxazole (3t)

The pale yellow solid was obtained according to a general procedure (66% yield), mp, 61-63 °C, 1H NMR (400 MHz, CDCl$_3$) δ 7.67-7.57 (m, 2H), 7.56 (s, 1H), 7.44-7.40 (m, 3H), 7.34-7.36 (m, 1H), 6.54 (d, $J = 1.2$ Hz, 1H), 7.68 (d, $J = 1.5$ Hz, 1H), 13C NMR (100 MHz, CDCl$_3$) δ 153.96, 150.85, 144.42, 142.99, 128.93, 128.55, 127.67, 124.24, 123.22, 111.89, 111.42. HRMS calc. C$_{13}$H$_9$NO$_2$ (M$^+$): 211.0633, Found: 211.0630.

5-phenyl-2-(pyridin-3-yl)oxazole (3u)

The yellow solid was obtained according to a general procedure (51% yield), mp, 80-82 °C, 1H NMR (400 MHz, CDCl$_3$) δ 9.31 (s, 1H), 8.65 (d, $J = 4.2$ Hz, 1H), 8.57 (d, $J = 6.3$ Hz, 1H), 7.32 (d, $J = 6.3$ Hz, 1H), 7.65-7.61 (m, 1H), 7.52-7.40 (m, 4H), 13C NMR (100 MHz, CDCl$_3$) δ 156.08, 153.18, 147.89, 145.12, 135.80, 129.43, 129.17, 126.94, 125.97, 125.55, 124.59, 124.07. HRMS calc. C$_{14}$H$_{10}$N$_2$O (M$^+$): 222.0793, Found: 222.0791.
2-(3,4-dichlorophenyl)-5-phenyloxazole (3v)

![Structure](image)

The pale yellow solid was obtained according to a general procedure (85% yield), mp, 156-157 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.14 (d, $J = 1.8$ Hz, 1H), 7.90 (dd, $J = 8.4, 1.8$ Hz, 1H), 7.69 (d, $J = 7.2$ Hz, 2H), 7.52 (d, $J = 8.4$ Hz, 1H), 7.48-7.43 (m, 3H), 7.36 (t, $J = 7.2$ Hz, 1H), 13C NMR (75 MHz, CDCl$_3$) δ 158.96, 151.96, 134.47, 133.31, 130.93, 129.01, 128.82, 127.94, 127.57, 127.24, 125.26, 124.31, 123.69. HRMS calc. C$_{15}$H$_9$Cl$_2$NO (M^+): 289.0061, Found: 289.0064.

5-chloro-2-(5-phenyloxazol-2-yl)phenol (3w)

![Structure](image)

The pale yellow solid was obtained according to a general procedure (81% yield), mp, 162-165°C, 1H NMR (300 MHz, CDCl$_3$) δ 11.12 (s, 1H), 7.84 (s, 1H), 7.71 (d, $J = 7.5$ Hz, 2H), 7.49-7.36 (m, 4H), 7.28 (d, $J = 9.0$ Hz, 1H), 7.01 (d, $J = 9.0$ Hz, 1H), 13C NMR (75 MHz, CDCl$_3$) δ 159.59, 155.92, 150.62, 132.04, 129.08, 127.11, 125.14, 124.41, 124.31, 121.117, 118.73, 112.02. HRMS calc. C$_{15}$H$_{10}$ClNO$_2$ (M^+): 271.0400, Found: 271.0405.

2-(4-(1H-imidazol-1-yl)phenyl)-5-phenyloxazole (3x)

![Structure](image)

The yellow solid was obtained according to a general procedure (82% yield), mp, 175-177 °C, 1H NMR (300 MHz, CDCl$_3$) δ 8.16 (d, $J = 8.1$ Hz, 2H), 7.93 (s, 1H), 7.68 (d, $J = 7.8$ Hz, 2H), 7.48-7.41 (m, 5H), 7.36-7.28 (m, 2H), 7.22 (s 1H), 13C NMR (75 MHz, CDCl$_3$) δ 159.89, 151.70, 138.46, 135.39, 130.74, 128.99, 128.69, 127.84, 127.71, 126.46, 124.24, 123.61, 121.30, 117.86. HRMS calc. C$_{18}$H$_{13}$N$_3$O (M^+): 287.1059, Found: 287.1053.
(E)-2-(3,4-dimethoxystyryl)-5-(4-methoxyphenyl)oxazole (annuloline 6)³

The yellow solid was obtained according to a general procedure (75% yield), mp, 104-107 °C, \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.62 (d, \(J = 8.7\) Hz, 2H), 7.48 (d, \(J = 16.2\) Hz, 1H), 7.28 (s, 1H), 7.14-7.10 (m, 2H), 6.96 (d, \(J = 8.7\) Hz, 2H), 6.90-6.83 (m, 2H), 3.95(s 3H), 3.92 (s 3H), 3.86 (s 3H), \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 160.83, 159.82, 150.76, 150.18, 149.30, 135.21, 128.79, 125.72, 122.09, 121.15, 120.09, 114.43, 112.00, 111.26, 109.02, 55.98, 55.89, 55.37. HRMS calc. C\(_{20}\)H\(_{19}\)NO\(_4\) (M\(^+\)): 337.1314, Found: 337.1311.

References:
2-(4-methoxyphenyl)-5-phenyloxazole (3a)
2-(3-methoxyphenyl)-5-phenyloxazole (3b)
5-phenyl-2-p-tolyloxazole (3c)²
5-phenyl-2-m-tolyloxazole (3d)
5-phenyl-2-o-tolyloxazole (3e)
2-(5-phenyloxazol-2-yl)phenol (3f)
2,5-diphenyloxazole (3g)
2-(4-chlorophenyl)-5-phenyloxazole (3h)
2-(3-chlorophenyl)-5-phenyloxazole (3i)
2-(2-chlorophenyl)-5-phenyloxazole (3j)
2-(4-fluorophenyl)-5-phenyloxazole (3k)
2-(4-bromophenyl)-5-phenyloxazole (3l)
5-phenyl-2-(4-(trifluoromethyl)phenyl)oxazole (3m)
5-phenyl-2-(2-(trifluoromethyl)phenyl)oxazole (3n)
2-(2-nitrophenyl)-5-phenyloxazole (3o)
4-(5-phenyloxazol-2-yl)benzonitrile (3p)
(E)-5-phenyl-2-styryloxazole (3q)
2-(naphthalen-2-yl)-5-phenyloxazole (3r)
5-phenyl-2-(thiophen-2-yl)oxazole (3s)
2-(furan-2-yl)-5-phenyloxazole (3t)
5-phenyl-2-(pyridin-3-yl)oxazole (3u)
2-(3,4-dichlorophenyl)-5-phenyloxazole (3v)
5-chloro-2-(5-phenyloxazol-2-yl)phenol (3w)
2-(4-(1H-imidazol-1-yl)phenyl)-5-phenyloxazole (3x)
(E)-2-(3,4-dimethoxystyryl)-5-(4-methoxyphenyl)oxazole annuloline (6)