Supporting Information

Paper authors: Guirui Yu1*, Zemei Zheng2, Qiufeng Wang1, Yuling Fu1, Jie Zhuang1,3, Xiaomin Sun1, Yuesi Wang4

1Synthesis Research Center of CERN, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China;
2Department of Environmental Science and Technology, East China Normal University, Shanghai 200062, China;
3Department of Biosystems Engineering and Soil Science, Institute for a Secure and Sustainable Environment, Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN 37996-4134, USA;
4Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Name of the journal: Environmental Science and Technology

Date: June 28, 2010

This Supporting Information contains 6 pages, 4 figures, including this cover sheet.
FIGURE S1. The comparison between measured $R_{s,\text{monthly}}$ and simulated $R_{s,\text{monthly}}$ of terrestrial ecosystems in China (a, c: TP; b, d: TP2; ●: Forest; ○: Grassland; ▼: Cropland). The data in Fig. S1c and Fig. S1d were the averaged values of the same type of ecosystem in the same site in Fig. S1a and Fig. S1b, respectively.

The ability of TP model for estimating the spatio-temporal variability of $R_{s,\text{monthly}}$ was tested using the 333 collected monthly mean R_s data. The values of parameters are $R_0 = 1.250$, $Q = 0.055$, and $K = 4.25$. The results show that the coefficient of determination between the simulated and measured R_s values was only 0.37 with considerable systematic error (Fig. S1a). Therefore, TP model was reparameterized using the collected data. The model modified with new parameter values ($R_0 = 1.740$, $Q = 0.029$, $K = 0.911$) is referred to as TP2 model. However, TP2 model could only explain 40% of the spatio-temporal variability of the monthly mean R_s showing
limited improvement in the systematic error (Fig. S1b). It is obvious that neither the
original TP model nor the reparameterized TP model (i.e. TP2 model) could well
explain the spatial variability of $R_{s,\text{monthly}}$ in China (Fig. S1a,b). Figure S1c and S1d
shows the relationship between the averages of the measured and predicted $R_{s,\text{monthly}}$
of the same ecosystem.
FIGURE S2. The capability of GSMSR for explaining the seasonal variation of R_s in different terrestrial ecosystems (Forest: a~d; Grassland: e~g; Cropland: h~i). ●: observed values, △: estimated values.

The results demonstrate that the GSMSR model could well describe the seasonal dynamics of R_s of different terrestrial ecosystems.
FIGURE S3 Comparison between measured \(R_{s,\text{monthly}} \) and simulated \(R_{s,\text{monthly}} \) of GSMSR model.

\[
y = 0.67x + 0.87 \quad R^2 = 0.68
\]
FIGURE S4 The spatial pattern of mean annual R_s in China from 1995 to 2004.