Supporting Information

Palladium-Catalyzed Direct Oxidative Alkenylation of Azoles

Mitsuru Miyasaka, Koji Hirano, Tetsuya Satoh, and Masahiro Miura*
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka
565-0871, Japan

Contents

Instrumentation and Chemicals S1
Experimental Procedure S2
Characterization Data for Products S3–S40

Instrumentation and Chemicals

1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, respectively, for CDCl$_3$ solutions. MS data were obtained by EI or CI. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). Photoluminescence spectra were measured as described previously.1

2-Phenylthiazole (2g)2 and 2-phenyloxazole (4a)3 were prepared by the methods reported previously. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Experimental Procedure

Synthesis of 5-(thiazol-2-yl)nonan-5-ol (1c). In a 20 mL two-necked flask were added 2-bromothiazole (3 mmol, 492 mg) and Et₂O (2.5 mL) under nitrogen. "BuMgBr (3.6 mmol, 4.2 mL, 0.85 M, Et₂O solution) were added dropwise, and the resulting mixture was then stirred at 40 °C (bath temperature) for 1 h. The reaction mixture was cooled to room temperature, and 5-nonanone (512 mg, 3.6 mmol) was added. The mixture was stirred overnight, poured into saturated aq. NH₄Cl, and extracted with diethyl ether. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The product 1c (2.24 mmol, 509 mg, 75%) was isolated by chromatography on silica gel using hexane-ethyl acetate (9:1, v/v).

Synthesis of 2-(2,6-dimethylphenyl)thiazole (1h). In a 20 mL two-necked flask were added 2-bromothiazole (2 mmol, 325 mg), 2,6-dimethylphenylboronic acid (2 mmol, 300 mg), Pd(PPh₃)₄ (0.2 mmol, 231 mg), 2 M aq. Na₂CO₃ (2.4 mL), toluene (2.4 mL) and EtOH (1 mL). The resulting mixture was stirred under nitrogen at 90 °C (bath temperature) overnight. After cooling, the reaction mixture was poured into H₂O, extracted with Et₂O, and dried over Na₂SO₄. The product 1h (0.55 mmol, 104 mg, 28%) was isolated by chromatography on silica gel using hexane-ethyl acetate (95:5, v/v).

Aldol-type reaction of 3bb with benzaldehyde. In a 20 mL two-necked flask were added diisopropylamine (1 mmol, 145 μL) and THF (1 mL) under nitrogen. "BuLi (1 mmol, 625 μL, 1.6 M hexane solution) was added dropwise at 0 °C, and the solution was stirred for 1 h at the same temperature. The reaction mixture was cooled to -78 °C and 3bb (225 mg, 1 mmol) in THF (1 mL) was added. After 1 h, benzaldehyde (127 mg, 1.2 mmol) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The resulting mixture was poured into saturated aq. NH₄Cl and extracted with diethyl ether. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The product 9a (146 mg, 0.45 mmol, 45%) was isolated by chromatography on silica gel using hexane-ethyl acetate (8:2, v/v).

Dehydration of 9a. In a 20 mL two-necked flask were added 9a (0.4 mmol, 132 mg), MsCl (0.48 mmol, 37 μL) and CH₂Cl₂ (2 mL). Triethylamine (0.96 mmol, 136 μL) was added at 0 °C. The mixture was stirred at room temperature under air overnight and then poured into H₂O. The organic layer was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated in vacuo. The product 10a (0.34 mmol, 106 mg, 85%) was isolated by chromatography on silica gel using hexane-ethyl acetate (9:1, v/v).
Characterization Data of Products

5-(Thiazol-2-yl)nonan-5-ol (1c) m.p. 36-38 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.85 (t, \(J = 7.3\) Hz), 1.01-1.41 (m, 8H), 1.86-1.95 (m, 4H), 3.06 (s, 1H), 7.27 (d, \(J = 3.2\) Hz, 1H), 7.71 (d, \(J = 3.2\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 14.0, 22.9, 25.4, 42.5, 78.0, 118.9, 141.8, 178.0; HRMS m/z (M\(^+\)) calcd for C\(_{12}\)H\(_{21}\)NOS: 227.1344, found: 227.1345.

2-(2,6-Dimethylphenyl)thiazole (1h) oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) 2.14 (s, 6H), 7.11 (d, \(J = 7.6\) Hz, 2H), 7.23 (t, \(J = 7.6\) Hz, 1H), 7.46-7.47 (m, 1H), 7.50-7.51 (m, 1H), 7.92-7.94 (m, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) 20.1, 120.2, 127.5, 129.7, 133.5, 137.8, 142.9, 166.6; HRMS m/z (M\(^+\)) calcd for C\(_{11}\)H\(_{11}\)NS: 189.0612, found: 189.0602.

tert-Butyl (E)-3-(2-isobutylthiazol-5-yl)acrylate (3ab) oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.00 (d, \(J = 6.6\) Hz, 6H), 1.52 (s, 9H), 2.08-2.15 (m, 1H), 2.86 (d, \(J = 7.3\) Hz, 2H), 6.06 (d, \(J = 15.7\) Hz, 1H), 7.63 (d, \(J = 15.7\) Hz, 1H), 7.73 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) 22.2, 28.1, 29.7, 42.7, 80.8, 121.7, 133.1, 134.5, 145.1, 165.5, 172.5; HRMS m/z (M\(^+\)) calcd for C\(_{14}\)H\(_{21}\)NO\(_2\)S: 267.1293, found: 267.1291.

Phenyl (E)-3-(2-isobutylthiazol-5-yl)acrylate (3ac) m.p. 81-82 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.02 (d, \(J = 6.6\) Hz, 6H), 2.11-2.18 (m, 1H), 2.90 (d, \(J = 7.3\) Hz, 2H), 6.32 (d, \(J = 15.8\) Hz, 1H), 7.15 (d, \(J = 7.7\) Hz, 2H), 7.22-7.26 (m, 1H), 7.40 (t, \(J = 7.7\) Hz, 2H), 7.83 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) 22.2, 29.8, 42.8, 118.6, 121.5, 125.8, 129.4, 134.1, 136.0, 146.2, 150.7, 164.7, 173.6; HRMS m/z (M\(^+\)) calcd for C\(_{16}\)H\(_{17}\)NO\(_2\)S: 287.0980, found: 287.0983.

(E)-3-(2-isobutylthiazol-5-yl)-N,N-dimethylacrylamide (3ad) m.p. 73-75 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.09-2.16 (m, 1H), 2.86 (d, \(J = 7.3\) Hz, 2H), 3.06 (s, 3H), 3.14 (s, 3H), 6.18 (d, \(J = 15.0\) Hz, 1H), 7.72 (s, 1H) 7.74 (d, \(J = 15.0\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) 22.2, 29.7, 35.9, 37.2, 42.7, 118.8, 132.1, 135.1, 144.6, 165.8, 171.6; HRMS m/z (M\(^+\)) calcd for C\(_{12}\)H\(_{18}\)N\(_2\)OS: 238.1140, found: 238.1141.

2-Isobutyl-5-[((E))-styryl]thiazole (3ae) m.p. 64-66 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.08-2.15 (m, 1H), 2.86 (d, \(J = 7.3\) Hz, 2H), 6.32 (d, \(J = 15.0\) Hz, 1H), 7.15 (d, \(J = 7.7\) Hz, 2H), 7.22-7.26 (m, 1H), 7.40 (t, \(J = 7.7\) Hz, 2H), 7.83 (s, 1H), 7.93 (d, \(J = 15.6\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.2, 28.1, 29.7, 42.7, 60.8, 121.7, 133.1, 134.5, 145.1, 165.5, 172.5; HRMS m/z (M\(^+\)) calcd for C\(_{15}\)H\(_{17}\)NS: 243.1082, found: 243.1078.

2-Isobutyl-5-[((E))-4-methoxystyryl]thiazole (3af) m.p. 59-61 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.08-2.15 (m, 1H), 2.86 (d, \(J = 7.3\) Hz, 2H), 6.32 (d, \(J = 15.0\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.2, 28.1, 29.7, 42.7, 60.8, 121.7, 133.1, 134.5, 145.1, 165.5, 172.5; HRMS m/z (M\(^+\)) calcd for C\(_{16}\)H\(_{19}\)NOS: 273.1187, found: 273.1182.

5-[((E))-4-Fluorostyryl]-2-isobutylthiazole (3ag) m.p. 51-52 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.08-2.15 (m, 1H), 2.85 (d, \(J = 7.3\) Hz, 2H), 3.83 (s, 3H), 6.76 (d, \(J = 16.1\) Hz, 1H), 6.87-6.90 (m, 2H), 7.03 (d, \(J = 16.1\) Hz, 1H), 7.37-7.40 (m, 2H), 7.55 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.3, 29.7, 42.7, 55.3, 114.2, 116.6, 127.6, 129.4, 130.5, 137.7, 140.1, 159.5, 168.6; HRMS m/z (M\(^+\)) calcd for C\(_{16}\)H\(_{19}\)NOS: 273.1187, found: 273.1182.

Butyl 2-[(2-isobutylthiazol-5-yl)methyl]acrylate (3ah) oil; \(^1\)H NMR (400 MHz,
CDCl$_3$) δ 0.93 (t, $J = 7.3$ Hz, 3H), 0.97 (d, $J = 6.5$ Hz, 6H), 1.33-1.43 (m, 2H), 1.61-1.68 (m, 2H), 2.04-2.11 (m, 1H), 2.80 (d, $J = 7.3$ Hz, 2H), 3.78 (s, 2H), 4.17 (t, $J = 7.0$ Hz, 2H), 5.59-5.60 (m, 1H), 6.22 (s, 1H), 7.37 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.1, 22.3, 29.4, 29.7, 30.6, 42.5, 64.9, 126.4, 134.7, 139.1, 140.3, 166.4, 169.8; HRMS m/z (M$^+$) calcd for C$_{13}$H$_{22}$NO$_2$: 281.1449, found: 281.1443.

Butyl (E)-3-(2-isobutylthiazol-5-yl)-2-methylacrylate (3ah$^+$) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.00 (d, $J = 6.6$ Hz, 6H), 1.39-1.47 (m, 2H), 1.66-1.73 (m, 2H), 2.11-2.18 (m, 4H), 2.90 (d, $J = 166.3$, 168.7; HRMS m/z (M$^+$) calcd for C$_{14}$H$_{24}$NO: 225.1449, found: 225.1444.

Butyl (E)-3-(2-methylthiazol-5-yl)acrylate (3ba) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.7$ Hz, 3H), 1.38-1.47 (m, 2H), 1.64-1.69 (m, 2H), 2.73 (s, 3H), 4.20 (t, $J = 7.0$ Hz, 2H), 6.12 (d, $J = 15.7$ Hz, 1H), 7.72, (d, $J = 15.7$ Hz, 1H), 7.73 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.2, 19.7, 30.7, 64.6, 119.8, 134.0, 134.8, 145.5, 166.3, 168.4; HRMS m/z (M$^+$) calcd for C$_{15}$H$_{23}$NO$_2$: 225.0823, found: 225.0822.

Butyl (E)-3-(2-(5-hydroxynan-5-yl)thiazol-5-yl)acrylate (3ca) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.86 (t, $J = 7.4$ Hz, 6H), 0.96 (t, $J = 7.3$ Hz, 3H), 1.03-1.10 (m, 2H), 1.23-1.47 (m, 8H), 1.64-1.71 (m, 2H), 1.82-1.97 (m, 4H), 2.85 (s, 1H), 4.20 (t, $J = 6.9$ Hz, 2H), 6.18 (d, $J = 15.6$ Hz, 1H), 7.74 (d, $J = 15.6$ Hz, 1H), 7.79 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 13.9, 19.1, 22.8, 25.4, 30.7, 42.2, 64.6, 78.3, 120.0, 134.1, 134.9, 145.2, 166.4, 180.5; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{29}$NO$_2$: 353.2025, found: 353.2019.

Butyl (E)-3-(2-methoxythiazol-5-yl)acrylate (3da) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.3$ Hz, 3H), 1.42 (sex, $J = 7.3$ Hz, 2H), 1.67 (quin, $J = 7.3$ Hz, 2H), 4.11 (s, 3H), 4.18 (t, $J = 7.3$ Hz, 2H), 5.94 (d, $J = 15.6$ Hz, 1H), 7.29 (s, 1H), 7.64 (d, $J = 15.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.1, 30.7, 58.6, 64.4, 117.3, 127.9, 134.9, 141.5, 166.6, 176.0; HRMS m/z (M$^+$) calcd for C$_{17}$H$_{25}$NO$_2$: 241.0773, found: 241.0777.

Butyl (E)-3-[2-(methylthio)thiazol-5-yl]acrylate (3ea) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.7$ Hz, 3H), 1.42 (sex, $J = 7.7$ Hz, 2H), 1.63-1.70 (m, 2H), 2.72 (s, 3H), 4.19 (t, $J = 6.9$ Hz, 2H), 6.03 (d, $J = 15.8$ Hz, 1H), 7.70, (d, $J = 15.8$ Hz, 1H) 7.71 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 16.3, 19.1, 30.7, 64.5, 119.2, 133.4, 134.1, 145.7, 166.3, 169.7; HRMS m/z (M$^+$) calcd for C$_{17}$H$_{23}$NO$_2$: 257.0544, found: 257.0543.

Butyl (E)-3-[2-(N-butyacetamido)thiazol-5-yl]acrylate (3fa) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.94-1.01 (m, 6H), 1.40-1.46 (m, 4H), 1.64-1.78 (m, 4H), 2.43 (s, 3H), 4.12-4.20 (m, 4H), 6.15 (d, $J = 15.8$ Hz, 1H), 7.60 (s, 1H), 7.74 (d, $J = 15.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.71, 13.73, 19.2, 20.0, 22.6, 30.6, 30.7, 48.3, 64.4, 117.5, 129.7, 135.0, 141.3, 160.2, 166.8, 169.9; HRMS m/z (M$^+$) calcd for C$_{18}$H$_{24}$N$_2$O$_3$: 324.1508, found: 324.1511.

Butyl (E)-3-[2-(2,6-dimethylphenyl)thiazol-5-yl]acrylate (3ha) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.44 (sex, $J = 7.3$ Hz, 2H), 1.69 (quin, $J = 7.3$ Hz, 2H), 2.18 (s, 6H), 4.21 (t, $J = 7.3$ Hz, 2H), 6.23 (d, $J = 15.1$ Hz, 1H), 7.12 (d, $J = 7.8$ Hz, 2H), 7.26 (t, $J = 7.8$ Hz, 1H), 7.85 (d, $J = 15.1$ Hz, 1H), 8.01 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.2, 20.2, 30.8, 64.6, 120.5, 127.7, 129.7, 132.9, 133.8, 136.3, 137.6, 145.9, 166.3, 168.7; HRMS m/z (M$^+$) calcd for C$_{18}$H$_{24}$N$_2$O$_3$: 315.1293, found: 315.1298.
Butyl (E)-3-(4-methyl-2-phenylthiazol-5-yl)acrylate (3ia) m.p. 53-55 °C; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.7$ Hz, 3H), 1.44 (sex, $J = 7.7$ Hz, 2H), 1.66-1.72 (m, 2H), 2.57 (s, 3H), 4.21 (t, $J = 7.0$ Hz, 2H), 6.13 (d, $J = 15.4$ Hz, 1H), 7.42-7.46 (m, 3H), 7.80 (d, $J = 15.4$ Hz, 1H), 7.92-7.95 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 15.7, 19.2, 30.7, 64.5, 118.9, 126.7, 128.5, 129.0, 130.7, 133.1, 133.8, 156.6, 166.6, 167.5; HRMS m/z (M^+) calcd for C$_{17}$H$_{19}$NO$_2$: 281.1316, found: 281.1318.

Butyl (E)-3-(2,4-dimethylthiazol-5-yl)acrylate (3ja) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.43 (sex, $J = 7.3$ Hz, 2H), 1.64-1.71 (m, 2H), 2.48 (s, 3H), 2.67 (s, 3H), 4.19 (t, $J = 6.6$ Hz, 2H), 6.01 (d, $J = 15.4$ Hz, 1H), 7.74 (d, $J = 15.4$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 15.5, 19.1, 19.6, 30.7, 64.4, 118.5, 128.2, 133.9, 155.1, 166.4, 166.7; HRMS m/z (M^+) calcd for C$_{17}$H$_{19}$NO$_2$: 239.0980, found: 239.0977.

Butyl (E)-3-(2-phenyloxazol-5-yl)acrylate (5aa) m.p. 83-85 °C; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.44 (sex, $J = 7.3$ Hz, 2H), 1.66-1.73 (m, 2H), 4.20 (t, $J = 6.6$ Hz, 2H), 6.47 (d, $J = 15.7$ Hz, 1H), 7.37 (s, 1H), 7.47-7.51 (m, 4H), 8.07-8.10 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.1, 30.7, 64.4, 118.2, 126.7, 126.8, 128.9, 131.2, 131.9, 148.0, 163.0, 166.5; HRMS m/z (M^+) calcd for C$_{16}$H$_{17}$NO$_3$: 271.1208, found: 271.1199.

Butyl (E)-3-(2,4-dimethylthiazol-5-yl)acrylate (5ba) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.4$ Hz, 3H), 1.43 (sex, $J = 7.4$ Hz, 2H), 1.64-1.71 (m, 2H), 2.24 (s, 3H), 2.46 (s, 3H), 4.20 (t, $J = 6.9$ Hz, 2H), 6.20 (d, $J = 15.6$ Hz, 1H), 7.42 (d, $J = 15.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 11.8, 13.7, 14.1, 19.2, 30.7, 64.4, 115.4, 127.1, 140.6, 143.4, 162.4, 167.0; HRMS m/z (M^+) calcd for C$_{12}$H$_{17}$NO$_3$: 233.1206, found: 233.1206.

2,4-Dimethyl-5-[(E)-3-styryl]oxazole (5be) m.p. 65-67 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 2.21 (s, 3H), 2.45 (s, 3H), 6.81 (d, $J = 16.5$ Hz, 1H), 6.90 (d, $J = 16.5$ Hz, 1H), 7.22-7.26 (m, 1H), 7.32-7.36 (m, 2H), 7.45 (d, $J = 7.3$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 11.5, 13.9, 112.6, 126.2, 126.7, 127.6, 128.7, 133.8, 136.8, 145.0, 159.3; HRMS m/z (M^+) calcd for C$_{13}$H$_{13}$N$_2$O: 210.0827, found: 210.0828.

(E)-3-(4,5-Dimethylthiazol-2-yl)-N,N-dimethylacrylamide (7) m.p. 93-94 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 2.36 (s, 3H), 2.38 (s, 3H), 3.06 (s, 3H), 3.17 (s, 3H), 7.14 (d, $J = 15.0$ Hz, 1H), 7.60 (d, $J = 15.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 11.6, 14.8, 35.9, 37.4, 119.9, 129.2, 133.6, 150.5, 159.2, 165.8; HRMS m/z (M^+) calcd for C$_{10}$H$_{14}$N$_2$OS: 210.0827, found: 210.0828.

$^{4,5,5’,5’}$-Tetramethyl-2,2’-bithiazole (8)4 1H NMR (400 MHz, CDCl$_3$) δ 2.36 (s, 6H), 2.38 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 11.5, 14.7, 128.1, 149.5, 157.0.

tert-Butyl (E)-3-(2-methylthiazol-5-yl)acrylate (3bb) m.p. 58-59 ºC; 1H NMR (400 MHz, CDCl$_3$) δ 1.58 (s, 9H), 2.72 (s, 3H), 6.04 (d, $J = 15.7$ Hz, 1H), 7.63 (d, $J = 15.7$ Hz, 1H), 7.70 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 19.7, 28.1, 80.8, 121.7, 133.0, 134.9, 145.1, 165.5, 168.1; HRMS m/z (M^+) calcd for C$_{11}$H$_{16}$NO$_2$: 225.0821, found: 225.0821.

tert-Butyl (E)-3-[2-(2-hydroxy-2-phenylethyl)thiazol-5-yl]acrylate (9a) oil; 1H NMR (400 MHz, CDCl$_3$) δ 1.58 (s, 9H), 3.33-3.35 (m, 2H), 3.92 (bs, 1H), 5.16-5.19 (m, 1H), 6.08 (d, $J = 15.6$ Hz, 1H), 7.28-7.42 (m, 5H), 7.63 (d, $J = 15.6$ Hz, 1H), 7.77 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 42.5, 72.8, 81.0, 122.3, 125.7, 127.9, 128.6, 132.6.

tert-Butyl (E)-3-[2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)thiazol-5-yl]acrylate (9b) m.p. 125-126 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.51 (s, 9H), 3.31-3.33 (m, 2H), 3.81 (s, 3H), 3.81-3.83 (m, 1H), 6.07 (d, $J = 15.8$ Hz, 1H), 6.89 (d, $J = 8.8$ Hz, 2H), 7.32 (d, $J = 8.8$ Hz, 2H), 7.63 (d, $J = 15.8$ Hz, 1H), 7.75 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 42.6, 55.3, 72.4, 80.9, 113.9, 122.2, 127.0, 132.7, 134.7, 144.7, 159.2, 165.4, 169.6; HRMS m/z (M$^+$) calcd for C$_{18}$H$_{22}$NO$_3$S: 332.1320, found: 332.1317.

1H NMR (400 MHz, CDCl$_3$) δ 1.51 (s, 9H), 3.31-3.33 (m, 2H), 3.81 (s, 3H), 3.81-3.83 (m, 1H), 6.07 (d, $J = 15.8$ Hz, 1H), 6.89 (d, $J = 8.8$ Hz, 2H), 7.32 (d, $J = 8.8$ Hz, 2H), 7.63 (d, $J = 15.8$ Hz, 1H), 7.75 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 42.6, 55.3, 72.4, 80.9, 113.9, 122.2, 127.0, 132.7, 134.7, 144.7, 159.2, 165.4, 169.6; HRMS m/z (M$^+$) calcd for C$_{18}$H$_{22}$NO$_3$S: 332.1320, found: 332.1317.

tert-Butyl (E)-3-[2-(4-dimethylaminophenyl)-2-hydroxyethyl]thiazol-5-yl]acrylate (9c) m.p. 99-100 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.52 (s, 9H), 2.95 (s, 6H), 3.28-3.40 (m, 2H), 3.49 (bs, 1H), 5.06-5.07 (m, 1H), 6.07 (d, $J = 15.8$ Hz, 1H), 6.71 (d, $J = 8.8$ Hz, 2H), 7.26 (d, $J = 8.8$ Hz, 2H), 7.63 (d, $J = 15.8$ Hz, 1H), 7.75 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 40.6, 42.6, 72.7, 80.9, 112.5, 122.2, 126.7, 130.4, 132.8, 134.8, 150.4, 165.5, 170.0; HRMS m/z (M$^+$) calcd for C$_{20}$H$_{26}$N$_2$O$_3$S: 374.1664, found: 374.1668.

tert-Butyl (E)-3-[2-(4-trifluoromethylphenyl)-2-hydroxyethyl]thiazol-5-yl]acrylate (9d) m.p. 164-165 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.52 (s, 9H), 3.29-3.34 (m, 2H), 4.42 (bs, 1H), 5.24-5.26 (m, 1H), 6.08 (d, $J = 15.6$ Hz, 1H), 7.53 (d, $J = 7.8$ Hz, 2H), 7.62 (d, $J = 15.6$ Hz, 1H), 7.63 (d, $J = 15.6$ Hz, 1H), 7.77 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 42.1, 72.0, 81.0, 122.6, 124.1 (q, $J = 270.3$ Hz), 125.5 (q, $J = 3.8$ Hz), 126.0, 130.0 (q, $J = 32.4$ Hz), 132.4, 134.9, 144.6, 146.5, 165.3, 168.9; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{20}$F$_3$NO$_3$S: 399.1114, found: 399.1111.

1H NMR (400 MHz, CDCl$_3$) δ 1.53 (s, 9H), 6.13 (d, $J = 15.8$ Hz, 1H), 7.25 (d, $J = 16.5$ Hz, 1H), 7.34-7.40 (m, 3H), 7.42 (d, $J = 16.5$ Hz, 1H), 7.54-7.56 (m, 2H), 7.67 (d, $J = 15.8$ Hz, 1H), 7.85 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 80.9, 121.2, 122.1, 127.3, 129.0, 129.4, 132.8, 134.3, 135.4, 136.1, 146.5, 165.3, 168.9; HRMS m/z (M$^+$) calcd for C$_{18}$H$_{19}$NO$_2$S: 313.1136, found: 313.1122.

1H NMR (400 MHz, CDCl$_3$) δ 1.53 (s, 9H), 3.85 (s, 3H), 6.10 (d, $J = 15.7$ Hz, 1H), 6.92 (d, $J = 8.8$ Hz, 2H), 7.12 (d, $J = 16.5$ Hz, 1H), 7.41 (d, $J = 16.5$ Hz, 1H), 7.49 (d, $J = 8.8$ Hz, 2H), 7.66 (d, $J = 15.7$ Hz, 1H), 7.81 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 80.8, 114.4, 119.1, 121.7, 128.1, 128.8, 132.9, 133.8, 135.9, 146.5, 160.7, 165.5, 168.9; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{20}$F$_3$NO$_3$S: 399.1114, found: 399.1111.

1H NMR (400 MHz, CDCl$_3$) δ 1.53 (s, 9H), 6.10 (d, $J = 15.7$ Hz, 1H), 6.92 (d, $J = 8.8$ Hz, 2H), 7.12 (d, $J = 16.5$ Hz, 1H), 7.41 (d, $J = 16.5$ Hz, 1H), 7.49 (d, $J = 8.8$ Hz, 2H), 7.66 (d, $J = 15.7$ Hz, 1H), 7.81 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 80.8, 114.4, 119.1, 121.7, 128.1, 128.8, 132.9, 133.8, 135.9, 146.5, 160.7, 165.5, 168.9; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{20}$F$_3$NO$_3$S: 399.1114, found: 399.1111.
1H, 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 81.0, 122.6, 123.4, 124.0 (q, $J = 273.3$ Hz), 125.9 (q, $J = 3.2$ Hz), 127.4, 130.8 (q, $J = 32.8$ Hz), 132.5, 134.0, 135.0, 138.7, 146.6, 165.3, 167.2; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{18}$F$_3$NO$_2$S: 381.1010, found: 381.1009.
[1H and 13C NMR Spectra of 1c]
[^1H and ^{13}C NMR Spectra of 1h]

$$
\text{No.} & \delta / \text{ppm} & \text{Hz} & \text{Height} \\
1 & 166.54 & 167.49 & 7 \text{ppm} \\
2 & 142.90 & 143.09 & 33 \text{ppm} \\
3 & 137.77 & 138.48 & 40 \text{ppm} \\
4 & 133.46 & 134.15 & 12 \text{ppm} \\
5 & 129.22 & 129.88 & 38 \text{ppm} \\
6 & 127.52 & 128.18 & 100 \text{ppm} \\
7 & 120.16 & 120.80 & 33 \text{ppm} \\
8 & 20.21 & 203.15 & 84 \text{ppm}
$$
[1H and 13C NMR Spectra of 3aa]

No.	ppm	Hz	Height
1 | 172.78 | 17198.4 | 8.33 |
2 | 166.33 | 16655.4 | 12.68 |
3 | 145.43 | 14475.5 | 24.10 |
4 | 134.28 | 13395.9 | 13.79 |
5 | 134.01 | 13338.5 | 26.70 |
6 | 119.85 | 11908.2 | 27.79 |
7 | 64.49 | 6419.1 | 15.40 |
8 | 42.72 | 4251.7 | 30.99 |
9 | 30.67 | 3052.3 | 36.46 |
10 | 29.89 | 2955.6 | 33.24 |
11 | 22.18 | 2207.5 | 74.81 |
12 | 19.10 | 1900.8 | 40.49 |
13 | 13.65 | 1356.2 | 33.36 |
[^{1}H and ^{13}C NMR Spectra of 3ab]

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.50</td>
<td>17169.5</td>
<td>12.83</td>
</tr>
<tr>
<td>2</td>
<td>165.56</td>
<td>16478.5</td>
<td>11.12</td>
</tr>
<tr>
<td>3</td>
<td>145.08</td>
<td>14440.5</td>
<td>25.49</td>
</tr>
<tr>
<td>4</td>
<td>134.48</td>
<td>13395.7</td>
<td>14.89</td>
</tr>
<tr>
<td>5</td>
<td>133.07</td>
<td>13244.9</td>
<td>28.73</td>
</tr>
<tr>
<td>6</td>
<td>121.71</td>
<td>12114.0</td>
<td>29.86</td>
</tr>
<tr>
<td>7</td>
<td>80.77</td>
<td>8039.4</td>
<td>16.18</td>
</tr>
<tr>
<td>8</td>
<td>42.75</td>
<td>4254.7</td>
<td>23.81</td>
</tr>
<tr>
<td>9</td>
<td>29.73</td>
<td>2959.4</td>
<td>23.56</td>
</tr>
<tr>
<td>10</td>
<td>28.14</td>
<td>2801.2</td>
<td>98.83</td>
</tr>
<tr>
<td>11</td>
<td>22.23</td>
<td>2212.9</td>
<td>66.27</td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3ac]

No.	ppm	Hz	Height
1 | 173.56 | 17274.9 | 10.08
2 | 164.70 | 16393.3 | 8.84
3 | 150.96 | 14995.4 | 9.49
4 | 146.23 | 14500.4 | 20.43
5 | 135.98 | 13534.4 | 22.03
6 | 134.12 | 13349.5 | 12.63
7 | 129.44 | 12884.1 | 47.36
8 | 125.85 | 12526.4 | 20.29
9 | 121.53 | 12096.1 | 46.37
10 | 118.58 | 11832.7 | 24.18
11 | 42.83 | 4262.7 | 22.65
12 | 29.77 | 2963.6 | 22.37
13 | 22.24 | 2214.0 | 46.62
[\(^1\text{H} \text{ and } ^{13}\text{C}\) NMR Spectra of 3ad]
[1H and 13C NMR Spectra of 3ae]
[1H and 13C NMR Spectra of 3af]

![NMR Spectra Image]

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.58</td>
<td>16779.5</td>
<td>7.51</td>
</tr>
<tr>
<td>2</td>
<td>169.54</td>
<td>15979.6</td>
<td>7.07</td>
</tr>
<tr>
<td>3</td>
<td>140.14</td>
<td>13948.4</td>
<td>12.53</td>
</tr>
<tr>
<td>4</td>
<td>137.71</td>
<td>13706.8</td>
<td>7.16</td>
</tr>
<tr>
<td>5</td>
<td>130.55</td>
<td>12994.1</td>
<td>14.61</td>
</tr>
<tr>
<td>6</td>
<td>129.44</td>
<td>12884.1</td>
<td>8.95</td>
</tr>
<tr>
<td>7</td>
<td>127.59</td>
<td>12699.6</td>
<td>31.83</td>
</tr>
<tr>
<td>8</td>
<td>116.60</td>
<td>11606.0</td>
<td>15.21</td>
</tr>
<tr>
<td>9</td>
<td>114.21</td>
<td>11367.8</td>
<td>30.86</td>
</tr>
<tr>
<td>10</td>
<td>55.32</td>
<td>5505.9</td>
<td>17.75</td>
</tr>
<tr>
<td>11</td>
<td>42.67</td>
<td>4248.7</td>
<td>16.44</td>
</tr>
<tr>
<td>12</td>
<td>29.77</td>
<td>2962.9</td>
<td>16.87</td>
</tr>
<tr>
<td>13</td>
<td>22.28</td>
<td>2217.8</td>
<td>33.86</td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3ag]
[1H and 13C NMR Spectra of 3ah]

No.	ppm	Hz	Height	No.	ppm	Hz	Height
1 | 169.77 | 16988.2 | 8.38 | 13 | 19.05 | 1905.4 | 23.58
2 | 166.36 | 16658.8 | 7.60 | 14 | 13.66 | 1360.1 | 21.50
3 | 140.30 | 13864.8 | 20.98 | 5 | 135.66 | 13403.5 | 9.90
4 | 139.14 | 13849.1 | 11.10 | 6 | 128.45 | 12586.6 | 19.33
5 | 134.66 | 13403.5 | 9.90 | 7 | 64.88 | 6457.6 | 22.40
6 | 126.45 | 12586.6 | 19.33 | 8 | 42.47 | 4227.0 | 23.94
7 | 30.59 | 3044.3 | 23.48 | 9 | 29.70 | 2956.0 | 22.02
8 | 29.39 | 2925.2 | 21.89 | 10 | 22.26 | 2215.5 | 47.56

S-17
[1H and 13C NMR Spectra of \textbf{3ah}']

\begin{figure}
\centering
\includegraphics[width=\textwidth]{spectrum.png}
\end{figure}

\begin{table}
\begin{tabular}{cccccccc}
\hline
No & ppm & Hz & Height & No & ppm & Hz & Height \\
\hline
1 & 173.27 & 17246.0 & 7.99 & 13 & 14 & 33 & 14262.2 & 16.65 \\
2 & 168.10 & 16731.9 & 5.88 & 14 & 13 & 74 & 13677.7 & 18.17 \\
3 & 145.98 & 14523.9 & 18.30 & & & & & \\
4 & 133.21 & 13259.3 & 8.54 & & & & & \\
5 & 128.59 & 12798.9 & 15.77 & & & & & \\
6 & 126.58 & 12599.1 & 7.18 & & & & & \\
7 & 64.98 & 6467.4 & 17.49 & & & & & \\
8 & 42.51 & 42211.1 & 19.30 & & & & & \\
9 & 30.74 & 3059.5 & 19.16 & & & & & \\
10 & 29.81 & 2966.8 & 17.84 & & & & & \\
11 & 22.27 & 2216.7 & 36.44 & & & & & \\
12 & 19.23 & 1914.5 & 18.66 & & & & & \\
\hline
\end{tabular}
\end{table}
[1H and 13C NMR Spectra of 3ba]

![NMR Spectra of 3ba](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168.42</td>
<td>16765</td>
<td>12.53</td>
</tr>
<tr>
<td>2</td>
<td>166.35</td>
<td>16557</td>
<td>13.12</td>
</tr>
<tr>
<td>3</td>
<td>145.50</td>
<td>14482</td>
<td>29.37</td>
</tr>
<tr>
<td>4</td>
<td>134.76</td>
<td>13413</td>
<td>18.62</td>
</tr>
<tr>
<td>5</td>
<td>133.97</td>
<td>13334</td>
<td>27.58</td>
</tr>
<tr>
<td>6</td>
<td>119.78</td>
<td>11922</td>
<td>31.98</td>
</tr>
<tr>
<td>7</td>
<td>64.57</td>
<td>6427</td>
<td>34.44</td>
</tr>
<tr>
<td>8</td>
<td>30.72</td>
<td>3057</td>
<td>40.88</td>
</tr>
<tr>
<td>9</td>
<td>19.71</td>
<td>1961</td>
<td>21.66</td>
</tr>
<tr>
<td>10</td>
<td>19.15</td>
<td>1908</td>
<td>38.95</td>
</tr>
<tr>
<td>11</td>
<td>13.69</td>
<td>1362</td>
<td>34.56</td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3ca]
[1H and 13C NMR Spectra of 3da]

![NMR Spectra of 3da](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>175.01</td>
<td>17691.4</td>
<td>14.85</td>
</tr>
<tr>
<td>2</td>
<td>166.56</td>
<td>16741.6</td>
<td>22.63</td>
</tr>
<tr>
<td>3</td>
<td>141.48</td>
<td>14220.8</td>
<td>44.25</td>
</tr>
<tr>
<td>4</td>
<td>134.86</td>
<td>13555.7</td>
<td>50.41</td>
</tr>
<tr>
<td>5</td>
<td>127.96</td>
<td>12861.7</td>
<td>15.45</td>
</tr>
<tr>
<td>6</td>
<td>117.29</td>
<td>11789.2</td>
<td>26.68</td>
</tr>
<tr>
<td>7</td>
<td>64.44</td>
<td>6477.4</td>
<td>26.31</td>
</tr>
<tr>
<td>8</td>
<td>58.63</td>
<td>5893.7</td>
<td>48.06</td>
</tr>
<tr>
<td>9</td>
<td>30.71</td>
<td>3087.3</td>
<td>41.88</td>
</tr>
<tr>
<td>10</td>
<td>19.14</td>
<td>1933.7</td>
<td>39.57</td>
</tr>
<tr>
<td>11</td>
<td>13.69</td>
<td>1375.4</td>
<td>34.71</td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3ea]
[1H and 13C NMR Spectra of 3fa]

![NMR Spectra Image]

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.91</td>
<td>16911.5</td>
<td>10.56</td>
<td>13</td>
<td>1994.1</td>
<td>20.90</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>166.83</td>
<td>16805.6</td>
<td>9.57</td>
<td>14</td>
<td>1906.9</td>
<td>21.04</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>160.24</td>
<td>15949.2</td>
<td>2.92</td>
<td>15</td>
<td>1368.2</td>
<td>23.52</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>141.33</td>
<td>14066.8</td>
<td>15.26</td>
<td>16</td>
<td>1364.7</td>
<td>22.64</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>134.85</td>
<td>13432.5</td>
<td>16.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>129.67</td>
<td>12906.6</td>
<td>6.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>117.45</td>
<td>11690.4</td>
<td>13.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>61.38</td>
<td>6498.1</td>
<td>18.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>48.30</td>
<td>4807.2</td>
<td>15.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>30.75</td>
<td>3050.3</td>
<td>21.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>30.59</td>
<td>3044.7</td>
<td>18.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>22.62</td>
<td>2251.3</td>
<td>15.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3ha]

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.70</td>
<td>16956.8</td>
<td>6.55</td>
<td>13</td>
<td>20.23</td>
<td>2033.0</td>
<td>34.87</td>
</tr>
<tr>
<td>2</td>
<td>166.29</td>
<td>16714.8</td>
<td>8.83</td>
<td>14</td>
<td>19.16</td>
<td>1925.6</td>
<td>18.00</td>
</tr>
<tr>
<td>3</td>
<td>145.50</td>
<td>14865.6</td>
<td>17.61</td>
<td>15</td>
<td>13.71</td>
<td>1378.3</td>
<td>17.06</td>
</tr>
<tr>
<td>4</td>
<td>137.50</td>
<td>13620.9</td>
<td>17.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>136.35</td>
<td>13705.2</td>
<td>8.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>133.85</td>
<td>13433.6</td>
<td>12.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>132.96</td>
<td>13383.0</td>
<td>7.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>129.66</td>
<td>13032.3</td>
<td>13.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>127.70</td>
<td>12835.4</td>
<td>34.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>120.54</td>
<td>12116.0</td>
<td>11.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>64.64</td>
<td>6497.5</td>
<td>15.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30.72</td>
<td>3087.8</td>
<td>17.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S-24
[1H and 13C NMR Spectra of 3ia]

\[\text{Me} \]

\[\text{COO}''\text{Bu} \]

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107.50</td>
<td>16671.8</td>
<td>18.22</td>
<td>13</td>
<td>19.15</td>
<td>1906.9</td>
<td>60.55</td>
</tr>
<tr>
<td>2</td>
<td>166.65</td>
<td>16587.3</td>
<td>15.67</td>
<td>14</td>
<td>15.75</td>
<td>1587.5</td>
<td>30.54</td>
</tr>
<tr>
<td>3</td>
<td>155.56</td>
<td>15582.8</td>
<td>25.96</td>
<td>15</td>
<td>13.71</td>
<td>1364.3</td>
<td>47.45</td>
</tr>
<tr>
<td>4</td>
<td>133.84</td>
<td>13321.7</td>
<td>33.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>133.07</td>
<td>13344.9</td>
<td>21.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>130.89</td>
<td>13008.2</td>
<td>29.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>128.98</td>
<td>12838.5</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>128.53</td>
<td>12792.8</td>
<td>13.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>126.72</td>
<td>12613.2</td>
<td>75.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>118.86</td>
<td>11830.9</td>
<td>31.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>124.51</td>
<td>12420.6</td>
<td>32.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>30.75</td>
<td>3060.7</td>
<td>28.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3ja]

\[
\begin{array}{c}
\text{Me} \\
\text{N} \\
\text{Me} \\
\text{COO''Bu}
\end{array}
\]

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>165.70</td>
<td>16592.7</td>
<td>7.57</td>
</tr>
<tr>
<td>2</td>
<td>166.41</td>
<td>16663.7</td>
<td>6.54</td>
</tr>
<tr>
<td>3</td>
<td>155.10</td>
<td>15437.4</td>
<td>5.76</td>
</tr>
<tr>
<td>4</td>
<td>133.90</td>
<td>13332.4</td>
<td>16.42</td>
</tr>
<tr>
<td>5</td>
<td>128.17</td>
<td>12757.0</td>
<td>7.01</td>
</tr>
<tr>
<td>6</td>
<td>118.49</td>
<td>11793.6</td>
<td>15.73</td>
</tr>
<tr>
<td>7</td>
<td>64.48</td>
<td>6419.4</td>
<td>21.20</td>
</tr>
<tr>
<td>8</td>
<td>30.75</td>
<td>3060.7</td>
<td>21.54</td>
</tr>
<tr>
<td>9</td>
<td>19.57</td>
<td>1948.0</td>
<td>14.74</td>
</tr>
<tr>
<td>10</td>
<td>19.16</td>
<td>1905.9</td>
<td>21.64</td>
</tr>
<tr>
<td>11</td>
<td>15.53</td>
<td>1548.2</td>
<td>13.42</td>
</tr>
<tr>
<td>12</td>
<td>13.71</td>
<td>1365.1</td>
<td>17.35</td>
</tr>
</tbody>
</table>

δ / ppm
[1H and 13C NMR Spectra of 5aa]

\begin{align*}
\text{\begin{tabular}{|l|l|l|l|l|l|}
\hline
\text{No.} & \text{ppm} & \text{Hz} & \text{Height} & \text{No.} & \text{ppm} & \text{Hz} & \text{Height} \\
\hline
1 & 165.48 & 16571.0 & 21.64 & 13 & 18.15 & 1906.6 & 48.30 \\
2 & 163.05 & 16228.9 & 14.11 & 14 & 13.71 & 1364.3 & 47.38 \\
3 & 148.04 & 14735.0 & 21.08 & & & & \\
4 & 131.89 & 13126.5 & 42.51 & & & & \\
5 & 131.18 & 13057.3 & 41.35 & & & & \\
6 & 128.90 & 12830.5 & 87.61 & & & & \\
7 & 127.60 & 12700.7 & 41.49 & & & & \\
8 & 126.78 & 12610.3 & 95.21 & & & & \\
9 & 126.67 & 12608.3 & 19.57 & & & & \\
10 & 118.16 & 11760.8 & 42.16 & & & & \\
11 & 64.64 & 6434.3 & 44.49 & & & & \\
12 & 30.70 & 3055.3 & 46.57 & & & & \\
\hline
\end{tabular}}
\end{align*}
[1H and 13C NMR Spectra of 5ba]
[1H and 13C NMR Spectra of 7]

No.	ppm	Hz	Height
1 | 165.75 | 16498.3 | 21.33 |
2 | 159.22 | 15847.6 | 20.70 |
3 | 150.50 | 14980.0 | 16.64 |
4 | 133.60 | 13298.1 | 45.30 |
5 | 129.28 | 12868.1 | 28.33 |
6 | 119.92 | 11935.9 | 52.91 |
7 | 37.41 | 3723.5 | 15.96 |
8 | 35.90 | 3573.6 | 18.48 |
9 | 14.72 | 1464.8 | 53.56 |
10 | 11.56 | 1150.5 | 54.62 |
[1H and 13C NMR Spectra of 8]

![NMR Spectra Diagram]

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107.05</td>
<td>156832.2</td>
<td>31.22</td>
</tr>
<tr>
<td>2</td>
<td>149.51</td>
<td>148881.1</td>
<td>34.34</td>
</tr>
<tr>
<td>3</td>
<td>128.12</td>
<td>127352.5</td>
<td>29.48</td>
</tr>
<tr>
<td>4</td>
<td>14.75</td>
<td>1467.8</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>11.54</td>
<td>1148.9</td>
<td>74.17</td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 3bb]

![NMR Spectra Image]

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>165.49</td>
<td>16728.1</td>
<td>13.88</td>
</tr>
<tr>
<td>2</td>
<td>145.09</td>
<td>14441.2</td>
<td>31.08</td>
</tr>
<tr>
<td>3</td>
<td>134.86</td>
<td>13425.2</td>
<td>27.83</td>
</tr>
<tr>
<td>4</td>
<td>132.97</td>
<td>13235.0</td>
<td>37.20</td>
</tr>
<tr>
<td>5</td>
<td>121.74</td>
<td>12117.8</td>
<td>38.81</td>
</tr>
<tr>
<td>6</td>
<td>80.78</td>
<td>8040.9</td>
<td>28.77</td>
</tr>
<tr>
<td>7</td>
<td>28.13</td>
<td>2799.6</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>19.96</td>
<td>1956.4</td>
<td>42.05</td>
</tr>
</tbody>
</table>

S-32
[1H and 13C NMR Spectra of 9a]
^{1}H and ^{13}C NMR Spectra of 9b

![NMR Spectra](image)

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.64</td>
<td>16984.9</td>
<td>13.17</td>
<td>13</td>
<td>55.28</td>
<td>5500.6</td>
<td>28.15</td>
</tr>
<tr>
<td>2</td>
<td>165.40</td>
<td>16463.3</td>
<td>13.18</td>
<td>14</td>
<td>42.98</td>
<td>4293.4</td>
<td>23.32</td>
</tr>
<tr>
<td>3</td>
<td>159.25</td>
<td>15850.7</td>
<td>11.72</td>
<td>15</td>
<td>28.11</td>
<td>2796.1</td>
<td>82.49</td>
</tr>
<tr>
<td>4</td>
<td>144.87</td>
<td>14399.7</td>
<td>23.82</td>
<td>6</td>
<td>134.81</td>
<td>13418.0</td>
<td>15.06</td>
</tr>
<tr>
<td>5</td>
<td>134.77</td>
<td>13414.2</td>
<td>14.32</td>
<td>7</td>
<td>132.69</td>
<td>13209.8</td>
<td>23.12</td>
</tr>
<tr>
<td>8</td>
<td>126.99</td>
<td>12640.2</td>
<td>51.19</td>
<td>9</td>
<td>122.23</td>
<td>12166.1</td>
<td>24.54</td>
</tr>
<tr>
<td>10</td>
<td>113.91</td>
<td>11338.5</td>
<td>51.83</td>
<td>11</td>
<td>80.93</td>
<td>8055.0</td>
<td>18.36</td>
</tr>
<tr>
<td>12</td>
<td>72.44</td>
<td>7209.8</td>
<td>25.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S-34
[^1H and ^13C NMR Spectra of 9c]

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>173.03</td>
<td>16924.1</td>
<td>11.96</td>
<td>13</td>
<td>42.60</td>
<td>4240.7</td>
<td>19.31</td>
</tr>
<tr>
<td>2</td>
<td>165.47</td>
<td>16469.8</td>
<td>12.27</td>
<td>14</td>
<td>40.57</td>
<td>4098.2</td>
<td>43.73</td>
</tr>
<tr>
<td>3</td>
<td>150.40</td>
<td>14969.8</td>
<td>10.77</td>
<td>15</td>
<td>28.13</td>
<td>2799.6</td>
<td>70.93</td>
</tr>
<tr>
<td>4</td>
<td>144.72</td>
<td>14405.1</td>
<td>21.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>134.77</td>
<td>13414.6</td>
<td>12.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>132.83</td>
<td>13220.9</td>
<td>20.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>130.37</td>
<td>12978.2</td>
<td>11.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>126.76</td>
<td>12616.6</td>
<td>45.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>122.05</td>
<td>12147.8</td>
<td>22.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>112.48</td>
<td>11186.2</td>
<td>44.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>80.87</td>
<td>8049.6</td>
<td>15.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>72.75</td>
<td>7240.7</td>
<td>21.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 9d]

![NMR Spectra](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>168.87</td>
<td>16974.5</td>
<td>17.02</td>
<td>13</td>
<td>125.55</td>
<td>12619.7</td>
<td>7.49</td>
</tr>
<tr>
<td>2</td>
<td>165.31</td>
<td>16616.0</td>
<td>15.82</td>
<td>14</td>
<td>125.51</td>
<td>12615.0</td>
<td>21.30</td>
</tr>
<tr>
<td>3</td>
<td>146.52</td>
<td>14727.4</td>
<td>7.84</td>
<td>15</td>
<td>125.47</td>
<td>12612.0</td>
<td>21.51</td>
</tr>
<tr>
<td>4</td>
<td>144.57</td>
<td>14531.4</td>
<td>30.55</td>
<td>16</td>
<td>123.44</td>
<td>12698.2</td>
<td>7.83</td>
</tr>
<tr>
<td>5</td>
<td>134.95</td>
<td>13564.3</td>
<td>17.89</td>
<td>17</td>
<td>125.40</td>
<td>12694.9</td>
<td>4.27</td>
</tr>
<tr>
<td>6</td>
<td>132.43</td>
<td>13311.7</td>
<td>24.03</td>
<td>18</td>
<td>122.70</td>
<td>12333.1</td>
<td>3.66</td>
</tr>
<tr>
<td>7</td>
<td>130.47</td>
<td>13114.3</td>
<td>1.42</td>
<td>19</td>
<td>122.59</td>
<td>12322.6</td>
<td>22.28</td>
</tr>
<tr>
<td>8</td>
<td>130.15</td>
<td>13082.2</td>
<td>4.40</td>
<td>20</td>
<td>119.99</td>
<td>12060.0</td>
<td>0.22</td>
</tr>
<tr>
<td>9</td>
<td>129.83</td>
<td>13049.6</td>
<td>3.73</td>
<td>21</td>
<td>81.05</td>
<td>8146.5</td>
<td>22.48</td>
</tr>
<tr>
<td>10</td>
<td>129.51</td>
<td>13017.5</td>
<td>1.00</td>
<td>22</td>
<td>73.03</td>
<td>7240.3</td>
<td>23.71</td>
</tr>
<tr>
<td>11</td>
<td>128.11</td>
<td>12877.1</td>
<td>1.63</td>
<td>23</td>
<td>42.15</td>
<td>4237.0</td>
<td>22.20</td>
</tr>
<tr>
<td>12</td>
<td>126.05</td>
<td>12669.5</td>
<td>62.99</td>
<td>24</td>
<td>28.10</td>
<td>2824.7</td>
<td>97.34</td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 10a]
$[{^1}H\ and\ {^{13}}C\ NMR\ Spectra\ of\ 10b\]$

![NMR Spectra](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.91</td>
<td>16812.2</td>
<td>3.67</td>
<td>13</td>
<td>80.63</td>
<td>8045.5</td>
<td>6.56</td>
</tr>
<tr>
<td>2</td>
<td>165.57</td>
<td>16480.0</td>
<td>4.53</td>
<td>14</td>
<td>55.38</td>
<td>5512.0</td>
<td>8.53</td>
</tr>
<tr>
<td>3</td>
<td>160.73</td>
<td>15998.7</td>
<td>3.65</td>
<td>15</td>
<td>28.17</td>
<td>2803.4</td>
<td>25.30</td>
</tr>
<tr>
<td>4</td>
<td>146.52</td>
<td>14593.9</td>
<td>7.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>135.87</td>
<td>13523.6</td>
<td>6.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>133.76</td>
<td>13314.1</td>
<td>4.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>132.90</td>
<td>13228.5</td>
<td>6.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>128.86</td>
<td>12826.3</td>
<td>15.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>128.15</td>
<td>12755.5</td>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>121.73</td>
<td>12116.6</td>
<td>7.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>119.09</td>
<td>11853.7</td>
<td>7.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>114.44</td>
<td>11390.6</td>
<td>14.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[1H and 13C NMR Spectra of 10c]

<table>
<thead>
<tr>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169.86</td>
<td>17073.2</td>
<td>17.96</td>
<td>13</td>
<td>80.69</td>
<td>809.6</td>
<td>20.46</td>
</tr>
<tr>
<td>2</td>
<td>165.72</td>
<td>16957.2</td>
<td>11.20</td>
<td>14</td>
<td>40.17</td>
<td>4038.1</td>
<td>63.04</td>
</tr>
<tr>
<td>3</td>
<td>151.15</td>
<td>15192.7</td>
<td>18.17</td>
<td>15</td>
<td>28.15</td>
<td>2829.5</td>
<td>53.03</td>
</tr>
<tr>
<td>4</td>
<td>146.61</td>
<td>14736.5</td>
<td>25.25</td>
<td>16</td>
<td>13.85</td>
<td>13755.0</td>
<td>21.64</td>
</tr>
<tr>
<td>5</td>
<td>133.13</td>
<td>13381.2</td>
<td>20.74</td>
<td>17</td>
<td>132.50</td>
<td>13301.1</td>
<td>21.15</td>
</tr>
<tr>
<td>6</td>
<td>128.87</td>
<td>12953.7</td>
<td>54.84</td>
<td>18</td>
<td>123.25</td>
<td>12388.2</td>
<td>20.59</td>
</tr>
<tr>
<td>7</td>
<td>121.04</td>
<td>12166.8</td>
<td>23.51</td>
<td>19</td>
<td>116.46</td>
<td>11705.8</td>
<td>16.68</td>
</tr>
<tr>
<td>8</td>
<td>112.04</td>
<td>11262.0</td>
<td>54.40</td>
<td>20</td>
<td>108.41</td>
<td>10958.9</td>
<td>20.04</td>
</tr>
<tr>
<td>9</td>
<td>109.23</td>
<td>10986.7</td>
<td>25.07</td>
<td>21</td>
<td>104.90</td>
<td>10580.2</td>
<td>23.51</td>
</tr>
<tr>
<td>10</td>
<td>103.13</td>
<td>10372.6</td>
<td>28.15</td>
<td>22</td>
<td>99.25</td>
<td>9970.8</td>
<td>20.04</td>
</tr>
<tr>
<td>11</td>
<td>99.25</td>
<td>9970.8</td>
<td>20.04</td>
<td>23</td>
<td>94.20</td>
<td>9470.8</td>
<td>20.04</td>
</tr>
<tr>
<td>12</td>
<td>94.20</td>
<td>9470.8</td>
<td>20.04</td>
<td>24</td>
<td>90.20</td>
<td>9070.8</td>
<td>20.04</td>
</tr>
</tbody>
</table>

No ppm Hz Height No ppm Hz Height 14 15 16 17 18 19 20 21 22 23
[1H and 13C NMR Spectra of 10d]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{nmr_spectra}
\end{figure}

<table>
<thead>
<tr>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
<th>No.</th>
<th>ppm</th>
<th>Hz</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>167.23</td>
<td>16545.6</td>
<td>14.53</td>
<td>13</td>
<td>127.37</td>
<td>12677.9</td>
<td>63.56</td>
</tr>
<tr>
<td>2</td>
<td>165.34</td>
<td>16456.8</td>
<td>17.15</td>
<td>14</td>
<td>125.93</td>
<td>12534.6</td>
<td>7.06</td>
</tr>
<tr>
<td>3</td>
<td>146.56</td>
<td>14687.3</td>
<td>30.22</td>
<td>15</td>
<td>125.93</td>
<td>12531.0</td>
<td>22.90</td>
</tr>
<tr>
<td>4</td>
<td>139.78</td>
<td>13813.4</td>
<td>8.57</td>
<td>16</td>
<td>125.93</td>
<td>12527.2</td>
<td>22.71</td>
</tr>
<tr>
<td>5</td>
<td>135.04</td>
<td>13440.8</td>
<td>17.31</td>
<td>17</td>
<td>125.93</td>
<td>12523.4</td>
<td>8.65</td>
</tr>
<tr>
<td>6</td>
<td>134.02</td>
<td>13339.2</td>
<td>20.80</td>
<td>18</td>
<td>125.93</td>
<td>12528.4</td>
<td>3.13</td>
</tr>
<tr>
<td>7</td>
<td>132.52</td>
<td>13190.4</td>
<td>28.07</td>
<td>19</td>
<td>123.38</td>
<td>12291.0</td>
<td>22.43</td>
</tr>
<tr>
<td>8</td>
<td>131.28</td>
<td>13066.8</td>
<td>1.07</td>
<td>20</td>
<td>122.58</td>
<td>12201.1</td>
<td>30.67</td>
</tr>
<tr>
<td>9</td>
<td>130.95</td>
<td>13034.4</td>
<td>4.91</td>
<td>21</td>
<td>122.54</td>
<td>12197.3</td>
<td>5.13</td>
</tr>
<tr>
<td>10</td>
<td>130.62</td>
<td>13001.7</td>
<td>4.95</td>
<td>22</td>
<td>119.81</td>
<td>11924.8</td>
<td>0.94</td>
</tr>
<tr>
<td>11</td>
<td>130.30</td>
<td>12969.0</td>
<td>1.27</td>
<td>23</td>
<td>81.01</td>
<td>8063.7</td>
<td>24.50</td>
</tr>
<tr>
<td>12</td>
<td>128.01</td>
<td>12741.4</td>
<td>1.64</td>
<td>24</td>
<td>28.12</td>
<td>2796.9</td>
<td>100</td>
</tr>
</tbody>
</table>

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{nmr_spectra}
\end{figure}