Face Selection in One-Step Bending of Janus Nanopillars

Hyunsik Yoon†, Heeje Woo‡, Moon Kee Choi†, Kahp Y. Suh* ‡ and Kookheon Char* †

† School of Chemical and Biological Engineering
The WCU Program of Chemical Convergence for Energy and Environment
Seoul National University, Seoul, 151-744, Korea

‡ School of Mechanical and Aerospace Engineering
The WCU Program on Multiscale Mechanical Design
Seoul National University, Seoul, 151-744, Korea

Title running head: Face Selection in One-Step Bending of Janus Nanopillars

* Corresponding authors:

Kookheon Char, Tel: +82-2-880-7431, Fax: +82-2-873-1548, E-mail: khchar@plaza.snu.ac.kr;
Kahp Y. Suh, Tel: +82-2-880-9103, Fax: +82-2-883-1597, E-mail: sky4u@ snu.ac.kr
Figure S1. SEM image of the polymer nanopillars obliquely coated with aluminum by sputtering method (30 nm thickness). The metal is incident from the left hand side, which can be judged from the shades formed at the right hand side. It shows that the nanopillars are bent toward polymer face (compressive residual stress), as with the case of thermal evaporation.
Figure S2. Thermogravimetric analysis (TGA) of PUA polymer, showing that the mass loss becomes significant when the treatment temperature exceeds 150 °C.
Figure S3. SEM image of the polymer nanopillars obliquely coated with Cr. Pillar tips were rounded and reflow occurred due to high melting temperature. The metal is incident from the left hand side, which can be judged from the shades formed at the right hand side. The diameter of nanopillar is 360 nm.