Supporting Information

for

The Conical Intersection Dominates the Generation of Tropospheric Hydroxyl Radical from NO₂ and H₂O

Qiu Fang, Juan Han, Jieling Jiang, Xuebo Chen,* and Weihai Fang*

Section 1: Tables

Table S1 The absolute energies (a.u.) for NO₂ along MEPs of photo-physical processes at CASSCF(9e/6o) and CASSCF(9e/6o)/CASPT2 computational levels, respectively.

<table>
<thead>
<tr>
<th></th>
<th>CAS(9,6)</th>
<th>CASPT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2A_1-179.9</td>
<td>-204.0218757</td>
<td>-204.4947775416</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.4950414541</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.2730822891</td>
</tr>
<tr>
<td>X^2A_1-170</td>
<td>-204.0325636</td>
<td>-204.4975980538</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.5153792302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.2895575929</td>
</tr>
<tr>
<td>X^2A_1-160</td>
<td>-204.0536043</td>
<td>-204.5361133093</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.4914134951</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.3104858648</td>
</tr>
<tr>
<td>X^2A_1-150</td>
<td>-204.0727699</td>
<td>-204.5528258426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.4817023844</td>
</tr>
<tr>
<td></td>
<td></td>
<td>204.3697795506</td>
</tr>
<tr>
<td>X^2A_1-140</td>
<td>-204.0845626</td>
<td>-204.5644311061</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.4670059184</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.3104858648</td>
</tr>
<tr>
<td>X^2A_1-130</td>
<td>-204.086144</td>
<td>-204.5669232077</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-204.4487661905</td>
</tr>
<tr>
<td>Term</td>
<td>Energy 1</td>
<td>Energy 2</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>(\tilde{X}^2 A_1)</td>
<td>-204.086642110</td>
<td>-204.5645569176</td>
</tr>
<tr>
<td></td>
<td>-204.0754665</td>
<td>-204.5543966883</td>
</tr>
<tr>
<td></td>
<td>-204.5120046761</td>
<td>-204.4683712037</td>
</tr>
<tr>
<td></td>
<td>-204.0509668</td>
<td>-204.5329791092</td>
</tr>
<tr>
<td>(\tilde{A}^2 B_2)</td>
<td>-204.0402788</td>
<td>-204.4989071949</td>
</tr>
<tr>
<td></td>
<td>-204.0576749</td>
<td>-204.5207418191</td>
</tr>
<tr>
<td></td>
<td>-204.058472200</td>
<td>-204.5206539058</td>
</tr>
<tr>
<td>(\tilde{A}^2 B_2)</td>
<td>-204.0576749</td>
<td>-204.5446283691</td>
</tr>
<tr>
<td></td>
<td>-204.058472200</td>
<td>-204.5206539058</td>
</tr>
<tr>
<td></td>
<td>-204.0576749</td>
<td>-204.5446283691</td>
</tr>
<tr>
<td></td>
<td>-204.035421</td>
<td>-204.5601232111</td>
</tr>
<tr>
<td></td>
<td>-204.027894947</td>
<td>-204.4932184594</td>
</tr>
<tr>
<td>(\tilde{B}^2 B_1)</td>
<td>-204.027289700</td>
<td>-204.4998033419</td>
</tr>
<tr>
<td></td>
<td>-204.0241036</td>
<td>-204.5406363914</td>
</tr>
<tr>
<td></td>
<td>-204.0241036</td>
<td>-204.5406363914</td>
</tr>
<tr>
<td></td>
<td>-204.0178227</td>
<td>-204.5589499681</td>
</tr>
<tr>
<td></td>
<td>-204.0075612</td>
<td>-204.5713658993</td>
</tr>
<tr>
<td>(\tilde{B}^2 B_1)</td>
<td>-204.0075612</td>
<td>-204.5713658993</td>
</tr>
<tr>
<td></td>
<td>-204.0075612</td>
<td>-204.5713658993</td>
</tr>
<tr>
<td>CI(A_1/B_2) (105.0)</td>
<td>-204.058049228</td>
<td>-204.519773607</td>
</tr>
<tr>
<td>CI(B_1/B_2) (132.1)</td>
<td>-204.045926514</td>
<td>-204.669709033</td>
</tr>
</tbody>
</table>
Table S2. The absolute energies (a.u.) for NO₂-H₂O complex along MEPs of photo-physical processes and hydrogen abstraction at CASSCF(13e/9o) and CASSCF(13e/9o)/CASPT2 computational levels, respectively.

<table>
<thead>
<tr>
<th>Structure</th>
<th>O4-H6 Distance</th>
<th>CAS(13,9)</th>
<th>CASPT2</th>
</tr>
</thead>
<tbody>
<tr>
<td>²A₁-r</td>
<td>0.967</td>
<td>-280.13368</td>
<td>-280.76422</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.65338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.61376</td>
</tr>
<tr>
<td>²A₁(1.0)</td>
<td>1.0</td>
<td>-280.11757</td>
<td>-280.75880</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.64575</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.63313</td>
</tr>
<tr>
<td>²A₁(1.107)</td>
<td>1.107</td>
<td>-280.09890</td>
<td>-280.74371</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.62411</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.59208</td>
</tr>
<tr>
<td>²A₁(1.209)</td>
<td>1.209</td>
<td>-280.07321</td>
<td>-280.71793</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.62481</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.62386</td>
</tr>
<tr>
<td>²A₁(1.22)</td>
<td>1.22</td>
<td>-280.05438</td>
<td>-280.68194</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.67744</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.58912</td>
</tr>
<tr>
<td>²A₁(1.235)</td>
<td>1.235</td>
<td>-280.05755</td>
<td>-280.68462</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.67952</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.59212</td>
</tr>
<tr>
<td>²A₁(1.26)</td>
<td>1.26</td>
<td>-280.06192</td>
<td>-280.68858</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.68287</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.59625</td>
</tr>
<tr>
<td>²A₁(1.31)</td>
<td>1.31</td>
<td>-280.07129</td>
<td>-280.69631</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.68989</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.60394</td>
</tr>
<tr>
<td>²A₁(1.36)</td>
<td>1.36</td>
<td>-280.07916</td>
<td>-280.70307</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.69651</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.61113</td>
</tr>
<tr>
<td>²A₁(1.406)</td>
<td>1.406</td>
<td>-280.08458</td>
<td>-280.70745</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-280.70124</td>
</tr>
</tbody>
</table>
Table S3 The energies (au) of NO₂-H₂O complex for hydrogen abstraction at the B3LYP/6-31G** level of theory.

<table>
<thead>
<tr>
<th>Structure</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₀-min</td>
<td>-281.5836611</td>
</tr>
<tr>
<td>TS</td>
<td>-281.5172832</td>
</tr>
<tr>
<td>S₀-p</td>
<td>-281.5271013</td>
</tr>
</tbody>
</table>

Section 2: Cartesian coordinates

S2.1 Cartesian coordinates of NO₂ along MEPs of photo-physical processes at CASSCF(9e/6o)/6-31G** level of theory.
$$X^{2}A_1-179.9$$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000717</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.181389</td>
<td>-0.000314</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.181389</td>
<td>-0.000314</td>
</tr>
</tbody>
</table>

$$X^{2}A_1-170$$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.071514</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.175022</td>
<td>-0.031287</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.175022</td>
<td>-0.031287</td>
</tr>
</tbody>
</table>

$$X^{2}A_1-160$$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.142032</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.157908</td>
<td>-0.062139</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.157908</td>
<td>-0.062139</td>
</tr>
</tbody>
</table>

$$X^{2}A_1-150$$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.211335</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.133774</td>
<td>-0.092459</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.133774</td>
<td>-0.092459</td>
</tr>
<tr>
<td>Center Number</td>
<td>Atomic Number</td>
<td>Atomic Type</td>
<td>Coordinates (Ångstroms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.279659</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.104514</td>
<td>-0.122351</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.104514</td>
<td>-0.122351</td>
</tr>
</tbody>
</table>

$\tilde{X}^2{A_1}$-130

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Ångstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

$\tilde{X}^2{A_1}$-120

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Ångstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
$\tilde{X}^2 A_1$-110

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.488748</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.003381</td>
<td>-0.213827</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.003381</td>
<td>-0.213827</td>
</tr>
</tbody>
</table>

$\tilde{A}^2 B_2$-90

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.622244</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>0.894476</td>
<td>-0.272232</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-0.894476</td>
<td>-0.272232</td>
</tr>
</tbody>
</table>

$\tilde{A}^2 B_2$-100

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.556692</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>0.953695</td>
<td>-0.243553</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-0.953695</td>
<td>-0.243553</td>
</tr>
</tbody>
</table>

$\tilde{A}^2 B_2$-min(102.9)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.538620</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>0.971071</td>
<td>-0.235646</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-0.971071</td>
<td>-0.235646</td>
</tr>
</tbody>
</table>
$\tilde{A}^2{B_2}$-110

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.493867</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.013891</td>
<td>-0.216067</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.013891</td>
<td>-0.216067</td>
</tr>
</tbody>
</table>

$\tilde{A}^2{B_2}$-120

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.430722</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.072422</td>
<td>-0.188441</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.072422</td>
<td>-0.188441</td>
</tr>
</tbody>
</table>

$\tilde{B}^2{B_1}$-min (179.5)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.003435</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.175992</td>
<td>-0.001503</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.175992</td>
<td>-0.001503</td>
</tr>
</tbody>
</table>

$\tilde{B}^2{B_1}$-170

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.071999</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>1.182991</td>
<td>-0.031499</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.000000</td>
<td>-1.182991</td>
<td>-0.031499</td>
</tr>
<tr>
<td>Center</td>
<td>Atomic Number</td>
<td>Atomic Number</td>
<td>Type</td>
<td>Coordinates (Angstroms)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------</td>
<td>------</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
<td>1.174495</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
<td>-1.174495</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Center</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>0.000000</td>
</tr>
</tbody>
</table>
S2.2 Cartesian coordinates of NO$_2$-H$_2$O complex along MEPs of photo-physical processes and hydrogen abstraction at CASSCF(13e/9o)/6-31G** computational levels.

\[^2A_1\text{-}r \]

\[^2A_1(1.0) \]
\(^{2}A_1(1.107)\)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.815855</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-1.987160</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.006474</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.197886</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.848453</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.228513</td>
</tr>
</tbody>
</table>

\(^{2}A_1(1.209)\)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.758557</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-1.922867</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.021048</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.119672</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.782139</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.121703</td>
</tr>
</tbody>
</table>

\(^{2}A_1(1.22)\)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.770539</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-1.937766</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.045775</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.204516</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.542934</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.083032</td>
</tr>
</tbody>
</table>
$^2A_1(1.235)$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.772454</td>
<td>-0.382314</td>
<td>-0.025924</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-1.939479</td>
<td>-0.160007</td>
<td>0.005656</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.044084</td>
<td>0.708209</td>
<td>0.035036</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.207295</td>
<td>-0.180111</td>
<td>-0.102553</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.547902</td>
<td>-0.563061</td>
<td>0.708515</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.069423</td>
<td>0.294526</td>
<td>-0.032151</td>
</tr>
</tbody>
</table>

$^2A_1(1.26)$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.797494</td>
<td>-0.392775</td>
<td>-0.033271</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-1.955265</td>
<td>-0.132074</td>
<td>0.020085</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.035799</td>
<td>0.677511</td>
<td>0.020606</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.230026</td>
<td>-0.180332</td>
<td>-0.099027</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.623156</td>
<td>-0.423852</td>
<td>0.741404</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.047598</td>
<td>0.252438</td>
<td>-0.041826</td>
</tr>
</tbody>
</table>

$^2A_1(1.31)$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X (Å)</th>
<th>Y (Å)</th>
<th>Z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.793876</td>
<td>-0.394656</td>
<td>-0.040763</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-1.949864</td>
<td>-0.138252</td>
<td>0.018196</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.038759</td>
<td>0.684059</td>
<td>0.030287</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.232138</td>
<td>-0.169145</td>
<td>-0.097275</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.602422</td>
<td>-0.541933</td>
<td>0.704105</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.006587</td>
<td>0.291228</td>
<td>-0.028433</td>
</tr>
</tbody>
</table>
$^2A_1(1.36)$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>Coordinates (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>-0.804341</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>-1.956755</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>-0.035827</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td></td>
<td>2.247734</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td>2.624517</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0.964653</td>
</tr>
</tbody>
</table>

$^2A_1(1.406)$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>Coordinates (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>-0.796245</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>-1.951180</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>-0.043068</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td></td>
<td>2.247214</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td>2.621028</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0.928960</td>
</tr>
</tbody>
</table>

$^2A_1(1.5)$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Type</th>
<th>Coordinates (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td></td>
<td>-0.819212</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>-1.967158</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td></td>
<td>-0.056101</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td></td>
<td>2.297175</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td>2.668466</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0.874686</td>
</tr>
</tbody>
</table>
\(^2A_1\cdot p\)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0.903268</td>
<td>-0.404366</td>
<td>-0.029306</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2.068342</td>
<td>-0.236937</td>
<td>0.012817</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.252278</td>
<td>0.765508</td>
<td>0.025912</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>-2.640587</td>
<td>-0.178846</td>
<td>-0.096290</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-3.077270</td>
<td>-0.492074</td>
<td>0.692746</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-0.685869</td>
<td>0.524839</td>
<td>-0.027113</td>
</tr>
</tbody>
</table>

\(^2B_1, ^2A_1/^2B_1\)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1.194501</td>
<td>0.109409</td>
<td>0.000098</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2.132325</td>
<td>-0.614791</td>
<td>0.015348</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.270697</td>
<td>0.855816</td>
<td>-0.006918</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>-2.769031</td>
<td>-0.365341</td>
<td>-0.071395</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-3.348443</td>
<td>-0.081489</td>
<td>0.617675</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-2.084994</td>
<td>0.310153</td>
<td>-0.114642</td>
</tr>
</tbody>
</table>

\(^2B_2\)

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1.012843</td>
<td>-0.428689</td>
<td>-0.020870</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>2.285210</td>
<td>-0.053809</td>
<td>0.051226</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0.303467</td>
<td>0.546400</td>
<td>-0.041961</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>-2.805618</td>
<td>-0.203014</td>
<td>-0.022975</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-3.314777</td>
<td>0.364315</td>
<td>0.533769</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-2.039597</td>
<td>0.319889</td>
<td>-0.277993</td>
</tr>
</tbody>
</table>
$^2A_1/^2B_2$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.895977 -0.325233 0.100971</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-2.085146 -0.468315 -0.077970</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>-0.594194 0.988038 -0.000897</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.792425 -0.304034 -0.011380</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3.328135 0.397973 -0.347826</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2.039027 0.153147 0.363013</td>
</tr>
</tbody>
</table>

$^2B_2/^2B_1$

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>1.003708 -0.139145 0.041744</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>2.169315 -0.498478 -0.007718</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.381882 0.918420 -0.013639</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>-2.747032 -0.338609 -0.070942</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.356256 -0.048938 0.589202</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-2.103023 0.372295 -0.143019</td>
</tr>
</tbody>
</table>

S2.3 Cartesian coordinates of NO$_2$-H$_2$O complex MEP of hydrogen abstraction at B3LYP/6-32G** computational level.

S_0 minimum

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.833244 -0.132281 0.027052</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>1.954572 -0.529952 -0.004928</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.338894 0.959359 -0.001111</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>-2.427510 -0.337794 -0.094109</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-2.896349 -0.249062 0.740937</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-1.864008 0.442131 -0.129121</td>
</tr>
</tbody>
</table>
TS

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>-0.886679</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>-2.022439</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.013264</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2.317186</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2.713070</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1.029595</td>
</tr>
</tbody>
</table>

S_{o-p}

<table>
<thead>
<tr>
<th>Center Number</th>
<th>Atomic Number</th>
<th>Atomic Type</th>
<th>Coordinates (Angstroms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0.984374</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td>2.109369</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0.119331</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>-2.596701</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-3.179560</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>-0.767044</td>
</tr>
</tbody>
</table>