Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents

Figure 1S Large sized MnSe nanoclusters and PL/UV-Vis spectra of the resulting Mn:ZnSe d-dots.

Large sized MnSe nanoclusters were fabricated using the typical synthesis strategy by extending the growth time of MnSe nanoclusters at 260 °C. Seen for TEM image, the size is about 4 nm (growth time is about 40 min). The overcoating temperature of ZnSe was 240 °C using 0.5 mL of 0.2 M ZnSt₂ as Zn precursor (ZnSt₂:HSt=1:4). UV-Vis and PL spectra were taken at 50 min after the injection of Zn precursor.

Figure 2S Normalized PL intensity of Mn:ZnSe d-dots verses the reaction time of the MnSe at 260 °C.

The formation conditions of MnSe nanoclusters were the same with the typical synthesis except the different growth times for the MnSe nanoclusters. The overcoating temperature of ZnSe was 240 °C using 0.5 mL of 0.2 M ZnSt₂ as Zn precursor (ZnSt₂:HSt=1:4). PL spectras were taken at 50 min after the injection of Zn precursor and PL intensity was normalized to the same absorbance at the excitation wavelength.
Figure 3S Temporal evolution of PL intensity of Mn:ZnSe d-dots using different ZnSe overcoating temperature schemes.

Formation conditions of the MnSe nanoclusters were the same as the typical synthesis strategy. Blue curve: the reaction was kept at 260 °C at all times. Red curve: the reaction was rapidly cooled down to 220 °C from 260 °C within 30 seconds. PL of d-dots was monitored by taking aliquots and measuring their PL spectra at room temperature. PL intensity was normalized to the same absorbance at the excitation wavelength.

Figure 4S UV-Vis and PL spectra using a two-injection mode (top) and the corresponding TEM images (bottom).

UV-Vis and PL spectras were taken at 50 min after the every injection of the Zn precursor Solution. The overcoating temperature of ZnSe was 240 °C using 0.5 mL of 0.2 M ZnSt$_2$ as the Zn precursor (ZnSt$_2$:HSt=1:4).