Supporting Information

Nonaqueous Synthesis and Photoluminescence of ITO Nanoparticles

Zhaoyong Sun,1 Jibao He,2 Amar Kumbhar3 and Jiye Fang1,*

1Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
2Coordinated Instrumentation Facility, Tulane University, New Orleans, Louisiana 70118
3Chapel Hill Analytical and Nanofabrication Laboratory, Institute of Advanced Materials, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

* email: jfang@binghamton.edu

Photograph: Suspensions of In$_2$O$_3$ and ITO NPs in hexane. from left to right, the samples are In$_2$O$_3$, ITO-A and ITO-B.
Figure S1. Typical spectra of TEM-EDS elemental analyses. (a) ITO-A (spectrum 2); (b) TO-B (spectrum 8).
Figure S2. Typical spectra of SEM-EDS elemental analyses. (a) ITO-A; (b) ITO-B.
Figure S3. Optical absorption spectra of In$_2$O$_3$ and ITO nanoparticle samples. Hexane was used as the solvent.
Figure S4. TEM images of (a) ITO-A and (b) ITO-B nanoparticles. TEM samples were prepared using a relatively low concentration of the particle suspensions in hexane.
Figure S5. Size histogram of (a) In$_2$O$_3$, (b) ITO-A, and (c) ITO-B NPs based on TEM observations.
Figure S6. The cubic bixbyite structure of ITO (ref. 48).