Redox Species Immobilized on Glassy Carbon Surfaces by Aryl Diazonium Reduction. SECM investigations.

Dodzi Zigah, Jean-Marc Noël, Corinne Lagrost, Philippe Hapiot

Sciences Chimiques de Rennes, Equipe MaCSE, CNRS, UMR N° 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

Supporting Information

This section presents some typical background cyclic voltamograms of the modified carbon electrodes in presence of two different probes dcMeFc and Fe. They show the response of the layer itself and the permeation of the two redox probes. Data are compared with the response obtained on the bare GC electrode before the modification.

![Figure S1: Cyclic voltammetry in 0.2M Bu4NPF6 + CH2Cl2 at a glassy carbon bare (red) and at the Ar-NH2 modified electrode (black) with 10^{-3} mol.L^{-1} Fe (left) or 10^{-3} mol.L^{-1} DeFe (right).](image1)

![Figure S2: Cyclic voltammetry in 0.2 mol.L^{-1} Bu4NPF6 + CH2Cl2 at glassy carbon bare (blue) and at the Ar-COOH modified electrode (green) with 10^{-3} mol.L^{-1} Fe (left) or 10^{-3} mol.L^{-1} DeFe (right).](image2)