Mono- versus Di- nuclear Pt(II)
6-(5-Trifluoromethyl-Pyrazol-3-yl)-2,2’-Bipyridine Complexes: Synthesis, Characterization and Remarkable Difference in Luminescent Properties

Kang-Wei Wang, a Jing-Lin Chen, b,c Yi-Ming Cheng, a Min-Wen Chung, a Cheng-Chih Hsieh, a Gene-Hsiang Lee, a Pi-Tai Chou, *, a Kellen Chen, b and Yun Chi, *, b

[a] Department of Chemistry, National Taiwan University, Taipei 106, Taiwan;
E-mail: chop@ntu.edu.tw

[b] Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan;
E-mail: ychi@mx.nthu.edu.tw

[c] School of Material and Chemistry Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000, China
Figure S1. The emission spectra of 3a in CH₂Cl₂ at room temperature. The emission spectra at two different concentrations are normalized at 580 nm.

Figure S2. The emission spectra of 3a in CH₂Cl₂ at 77 K. The emission spectra at two different concentrations are normalized at 620 nm.
Figure S3. The excitation spectra of 4b in CH$_2$Cl$_2$ monitored at 510 and 650 nm, respectively.

Figure S4. (a) and (b) show the P$_1$ and P$_2$ emission decay of 4b at 298K, 203K, and IRF, respectively. Note that the identical relaxation dynamics for P$_1$ and P$_2$ bands at different temperatures lead to the establishment of excited-state equilibrium (see text for detail).
Figure S5. The frontier orbitals of complex 5b associated with significant bimetallic interaction to confirm the 3LMMCT transition in the low-lying excited states. (The singly occupied molecular orbital (SOMO) for the triplet electronic state is similar to the LUMO of ground state; while SOMO-1 is like HOMO.)
Figure S6. The frontier orbitals of complex 3b and 4b associated with significant bimetallic interaction to confirm the $^3\text{LMMCT}$ transition. (The singly occupied molecular orbital (SOMO) for the triplet electronic state is similar to the LUMO of ground state; while SOMO-1 is like HOMO.)
Figure S7. Potential energy surface scan of the S_0 states for complexes 3b and 4b versus the Pt···Pt distance. The geometries of the S_0 states were performed with the restricted-TPSS method at each Pt-Pt distance. Note that in each scan, except for the fixed Pt···Pt distance, all other ligands are freely optimized.

Table S1. The respective emission lifetimes of the P$_1$ and P$_2$ bands at different temperatures of 4b.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>203</th>
<th>233</th>
<th>263</th>
<th>298</th>
</tr>
</thead>
<tbody>
<tr>
<td>P$_1$ band lifetime (ns)</td>
<td>351</td>
<td>341</td>
<td>314</td>
<td>284</td>
</tr>
<tr>
<td>P$_2$ band lifetime (ns)</td>
<td>359</td>
<td>333</td>
<td>306</td>
<td>290</td>
</tr>
</tbody>
</table>