Investigation and Application of Nanoparticle Dispersions of Pigment Yellow 185 using Organic Solvents

Algernon T. Kelley, Paula J. Alessi, Jill E. Fornalik, Peter G. Bessey, Jayne C. Garno, and Tommie L. Royster*

1 Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803 USA

2 OLED US Display OLED Systems Technology, Eastman Kodak Company, Rochester, NY 14650 USA

*Correspondence to: Tommie L. Royster, OLED US Display OLED Systems Technology, Eastman Kodak Company, Rochester, NY 14650 USA

Supporting Information Table of Contents

Figure S1: Tapping Mode- AFM images of pigment dispersion spin-coating without synergist

Figure S2: Tapping Mode- AFM images of pigment dispersion spin-coating with synergist
Figure S1. More aggregate clusters were detected for samples prepared without synergist. Tapping mode-AFM images of three different local areas of pigment dispersion without synergist present for a sample spin-coated on glass. Dense areas are apparent as bright clusters of aggregated dye nanoparticles. Topographs for [A], [B] and [C] display scan sizes of 9 x 9, 11 x 11 and 14 x 14 µm² with clusters covering 2.5, 4.7 and 7.3 percent of the surface, respectively.
Figure S2. Little aggregation was observed for dispersions containing synergist. Additional AFM topographs are shown for different local areas of a sample of pigment nanoparticles containing synergist that was spin-coated on glass. Tapping-mode AFM topographs [A], [B] and [C] reveal 8 x 8, 10 x 10 and 14 x 14 µm² scan areas, respectively. The density and size of clusters is reduced when the synergist was present.