Supporting information

Intercorrelation between Structural Ordering and Emission Properties in Photoconducting Polymers

Silke Rathgeber1,*, Diogo Bastos de Toledo2, Eckhard Birckner3, Harald Hoppe4, Daniel A. M. Egbe5

1 Johannes Gutenberg-University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
2 Max Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany.
3 Institute of Physical Chemistry, Friedrich –Schiller University Jena, Lessingstr. 10, 07743 Jena, Germany.
4 Institute of Physics, Ilmenau University of Technology, Weimarer Str. 32, 98693 Ilmenau, Germany.
5 Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler-University Linz, Altenbergerstr. 69, 4040 Linz, Austria.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{DSC thermograms (heat flow dH/dt as a function of temperature T) obtained during the first heating runs. Data are shifted along the y-axis for better visibility.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
polymer & 1st T [°C] & 2nd T [°C] & 3rd T [°C] \\
\hline
AnE-PVaa & 61 & 130 & 213 \\
AnE-PVad & 59 & 130 & 213 \\
AnE-PVac & 59 & 212 & 221 \\
AnE-PVab & 58 & 208 & 231 \\
AnE-PVac & 59 & 208 & 231 \\
AnE-PVba & 67 & & \\
AnE-PVbb & 53 & & \\
AnE-PVcc & 54 & 88 & 231 \\
stat & 62 & & \\
\hline
\end{tabular}
\caption{Transitions temperatures determined from the peak maxima of the DSC thermograms.}
\end{table}
Figure S2: WAXS results obtained for the powder samples after different annealing steps.
Figure S2 (continuation): WAXS results obtained for the powder samples after different annealing steps. A sketch of the structure of the non-amorphous AnE-PV polymers is also included.
Scheme S1: Side chain and backbone unit length estimations assuming a fully stretched conformation.
Figure S3: WAXS results obtained for the filament samples. Left: two-dimensional detector pattern. Right: corresponding q cuts, I_\parallel (blue) and I_\perp (red), as well as the radial averaged intensity I (black).
Figure S3 (continuation): WAXS results obtained for the filament samples. Left: two-dimensional detector pattern. Right: corresponding q cuts, I_\parallel (blue) and I_\perp (red), as well as the radial averaged intensity I (black).
Figure S3 (continuation): WAXS results obtained for the filament samples. Left: two-dimensional detector pattern. Right: corresponding q cuts, I_{\parallel} (blue) and I_{\perp} (red), as well as the radial averaged intensity I (black).
<table>
<thead>
<tr>
<th>T [°C]</th>
<th>AnE-PVaa</th>
<th>-ad</th>
<th>-ae</th>
<th>-ab</th>
<th>-ac</th>
<th>-cc</th>
<th>-stat</th>
<th>-ba</th>
<th>-bb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>RT</td>
<td>q_{inter}^*</td>
<td>3.27±0.02</td>
<td>3.26±0.02</td>
<td>3.22±0.02</td>
<td>3.71±0.02</td>
<td>4.02±0.02</td>
<td>3.67±0.02</td>
<td>3.98±0.02</td>
<td>3.93±0.05</td>
</tr>
<tr>
<td></td>
<td>Δq_{inter}^*</td>
<td>0.84±0.03</td>
<td>1.7±0.03</td>
<td>0.97±0.06</td>
<td>1.769±0.02</td>
<td>1.25±0.07</td>
<td>2.7±0.2</td>
<td>0.73±0.03</td>
<td>3.7±0.2</td>
</tr>
<tr>
<td></td>
<td>ξ_{inter}</td>
<td>7.5±0.4</td>
<td>3.7±0.2</td>
<td>6.5±0.5</td>
<td>3.7±0.2</td>
<td>5.0±0.4</td>
<td>2.3±0.2</td>
<td>8.6±0.5</td>
<td>1.7±0.1</td>
</tr>
<tr>
<td>100</td>
<td>q_{inter}^*</td>
<td>3.37±0.02</td>
<td>3.24±0.02</td>
<td>3.11±0.02</td>
<td>3.58±0.02</td>
<td>3.79±0.02</td>
<td>3.64±0.02</td>
<td>3.76±0.02</td>
<td>3.96±0.05</td>
</tr>
<tr>
<td></td>
<td>Δq_{inter}^*</td>
<td>0.33±0.02</td>
<td>0.90±0.02</td>
<td>0.52±0.02</td>
<td>1.05±0.03</td>
<td>0.38±0.03</td>
<td>3.1±0.2</td>
<td>0.48±0.02</td>
<td>3.4±0.1</td>
</tr>
<tr>
<td></td>
<td>ξ_{inter}</td>
<td>19±2</td>
<td>7.0±0.4</td>
<td>12.1±0.7</td>
<td>6.0±0.3</td>
<td>16±2</td>
<td>2.0±0.2</td>
<td>13.1±0.8</td>
<td>1.8±0.1</td>
</tr>
<tr>
<td>RT</td>
<td>q_{inter}^*</td>
<td>3.55±0.02</td>
<td>3.35±0.02</td>
<td>3.22±0.02</td>
<td>3.65±0.02</td>
<td>4.10±0.02</td>
<td>3.62±0.02</td>
<td>3.89±0.02</td>
<td>4.03±0.03</td>
</tr>
<tr>
<td></td>
<td>Δq_{inter}^*</td>
<td>0.48±0.02</td>
<td>0.98±0.02</td>
<td>0.60±0.02</td>
<td>1.05±0.03</td>
<td>0.44±0.03</td>
<td>2.8±0.2</td>
<td>0.48±0.02</td>
<td>4.0±0.2</td>
</tr>
<tr>
<td></td>
<td>ξ_{inter}</td>
<td>13.1±0.8</td>
<td>6.4±0.3</td>
<td>10.6±0.6</td>
<td>6.0±0.3</td>
<td>14±1</td>
<td>2.2±0.2</td>
<td>13.1±0.8</td>
<td>1.6±0.1</td>
</tr>
<tr>
<td>210</td>
<td>q_{inter}^*</td>
<td>3.09±0.02</td>
<td>3.01±0.02</td>
<td>2.93±0.02</td>
<td>3.45±0.02</td>
<td>3.40±0.02</td>
<td>3.92±0.02</td>
<td>3.63±0.02</td>
<td>3.86±0.03</td>
</tr>
<tr>
<td></td>
<td>Δq_{inter}^*</td>
<td>0.22±0.02</td>
<td>0.45±0.02</td>
<td>0.12±0.02</td>
<td>0.45±0.02</td>
<td>0.22±0.02</td>
<td>0.67±0.02</td>
<td>0.24±0.02</td>
<td>2.8±0.1</td>
</tr>
<tr>
<td></td>
<td>ξ_{inter}</td>
<td>29±3</td>
<td>13.9±0.9</td>
<td>51±9</td>
<td>13.9±0.9</td>
<td>29±3</td>
<td>9.4±0.5</td>
<td>27±3</td>
<td>2.2±0.1</td>
</tr>
<tr>
<td>RT</td>
<td>q_{inter}^*</td>
<td>3.44±0.02</td>
<td>3.34±0.02</td>
<td>3.26±0.02</td>
<td>3.60±0.02</td>
<td>3.81±0.02</td>
<td>4.07±0.02</td>
<td>3.81±0.02</td>
<td>3.93±0.03</td>
</tr>
<tr>
<td></td>
<td>Δq_{inter}^*</td>
<td>0.19±0.02</td>
<td>0.48±0.02</td>
<td>0.27±0.02</td>
<td>0.60±0.02</td>
<td>0.37±0.02</td>
<td>0.65±0.02</td>
<td>0.25±0.02</td>
<td>3.15±0.08</td>
</tr>
<tr>
<td></td>
<td>ξ_{inter}</td>
<td>33±4</td>
<td>13.1±0.8</td>
<td>24±2</td>
<td>10.6±0.6</td>
<td>17±1</td>
<td>9.7±0.5</td>
<td>25±2</td>
<td>2.0±0.1</td>
</tr>
</tbody>
</table>

Table S2: WAXS results obtained for the powder samples at different steps of the annealing procedure: Bragg peak positions q_{inter}^*, peak widths Δq_{inter}^* and correlation lengths ξ_{inter} corresponding to interlayer lattice planes d_{inter} listed in Table 2. RT denotes room temperature. q values are given in [nm$^{-1}$] and lengths in [nm].
Table S3: WAXS results obtained for the filament samples from I_{\perp} and $I_{\|}$: Bragg peak positions q_{j}^*, peak widths Δq_{j}^*, and correlation lengths ξ_{j} corresponding to lattice planes d_{j} with $j=\text{inter, } \pi-\pi$, and $\perp \|_{o,i}$ ($i=1, 2, 3$) listed in Table 3 and 4. q values are given in [nm$^{-1}$] and lengths in [nm].