Mild and versatile (bio-)functionalization of glass surfaces via thiol-ene photochemistry

Annabelle Bertin and Helmut Schlaad

Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany

Materials

All solvents and common chemical reagents were purchased as high-purity reagent-grade materials from Sigma-Aldrich and Fluka and were used as received. 1-Allyl α-D-glucopyranoside (>99%) and 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose (>99%) were purchased from Glycon Biochem. GmbH (Luckenwalde, Germany). (3-Mercaptopropyl)-trimethoxysilane (MPTMS, 95%), methacrylic acid (MAA, 99%; stabilized with 250 ppm of p-methoxyphenol), 1H,1H,2H-perfluoro-1-decene (>99%), polybutadiene (~62 mol % 1,2-units), Concanavalin A from Canavalia ensiformis (Jack bean) FITC conjugate (Type IV, lyophilized powder), were purchased from Sigma-Aldrich. Fluorescein Ricinus communis Agglutinin I (98%, solution in 10 mM HEPES, 0.15 M NaCl, pH 7.5, 0.08% NaN₃) was purchased from Vector Laboratories (Burlingame CA, USA). Solvents were purified using conventional methods reported elsewhere in the literature. Glass slides were purchased from Marienfeld Laboratory Glassware (Lauda-Königshofen, Germany).

Light source

The light source was an UV-immersion lamp Heraeus TQ 150 (Hg medium-pressure, 150 W). Irradiation occurred through the borosilicate glass (Duran) of the reaction vessel, filtering off the high-energy UV light with $\lambda < \sim 300$ nm.

Experimental procedures

Activation of glass slides. In order to regenerate the surface silanol groups of the commercial glass slides, Si–OH, an activation process was carried out (checked by FT-IR). This process consists in dipping the non-coated glass slides into a piranha solution (H₂SO₄:H₂O₂ 2:1 v/v) for 1 h at room temperature. Glass slides were thoroughly rinsed in distilled water and dried at 75 °C overnight.

Sulphydrylation of glass slides with MPTMS. To a 50 vol % solution of MPTMS in THF (freshly distilled) was added 0.4 vol% HCl (37 %). The solution was spin coated on the glass slide with a speed of 500 rpm during 30 s. The slides were “baked” at 150°C for 3 h, and then submitted to a sequential washing with CH₂Cl₂, toluene, hexane, acetone, and again CH₂Cl₂. Finally, the Glass-SH slide was dried at 75 °C for 1 h.
Determination of [SH]. The degree of modification was determined for Glass-SH following the method described by Kast and Bernkop-Schnürch (*Biomaterials* 2001, 22, 2345), which is a direct titration of the thiol content with iodine and starch as colorimetric indicator: Glass-SH (~500 mm2) was immersed in 10 ml of water, and the pH was adjusted to pH 2 with 1N HCl. After the addition of 5 mg of starch, the sample was titrated with a 1 mM aqueous iodine solution until a permanent light blue color was maintained; $V_{eq} = 0.6 \pm 0.1$ ml. Thus, $[SH] = [I_2] * V_{eq} / 500 = 1.2 \pm 0.2 \mu$mol/mm2.

Surface initiated photopolymerization of MAA. A ~4 wt % solution of MAA in water was added to the sulphydrylated glass slide. The mixture was degassed twice, put under an argon atmosphere, and exposed to UV light for 24 h at room temperature. The MAA-modified slide Glass-PMAA was subjected to washing with water and were then dried at 65 °C for 3 h.

Grafting of olefins. (1) A solution of 1H,1H,2H-perfluoro-1-decene (1.3 wt%) or 1,2-PB (4 wt%) in dry THF was added to the sulphydrylated glass slides. The mixture was degassed twice, put under an argon atmosphere, and exposed to UV light for 24 h at room temperature. The glass slides Glass-F and Glass-PB, respectively, were subjected to washing with THF and were dried at 65 °C for 3 h.
(2) A ~0.9 wt % solution of allyl-α-β-glucopyranoside in THF/MeOH 1:1 v/v was added to the sulphydrylated glass slide. The mixture was degassed twice, put under an argon atmosphere, and exposed to UV light for 24 h at room temperature. The glass slide Glass-Glc was subjected to washing with MeOH and was dried at 65 °C for 3 h.

Grafting of glucose on 1,2-PB coated glass slides. First, 1,2-PB was grafted under UV irradiation to the sulphydrylated glass slide following the procedure for the grafting of olefins; reaction time was 1 h. Tetra-O-acetyl-1-thio-β-d-glucopyranose was then grafted onto 1,2-PB-coated glass with UV light for 24 h. The acetate protecting groups are removed by dipping the sugar-coated glass slides in a solution of 1 mL MeOH + 1 mL 1M NaOH for 1 h at room temperature. The glass slide Glass-PB-Glc was then rinsed with water and MeOH and dried.

Labeling with Con A. Glucose-grafted glass slides, Glass-Glc or Glass-PB-Glc, were incubated with FITC-labelled Concanavalin A (ConA) (1 mg FITC-ConA in 1 mL PBS solution). After incubation of 1 h at room temperature, unbound protein was washed away by rinsing with PBS and washing with MilliQ water and the surface was dried.
Labeling with RCA I (control). Glucose-grafted glass slides, Glass-Glc or Glass-PB-Glc, were incubated with FITC-labelled *Ricinus communis Agglutinin I* (RCA I) (a solution of FITC-RCA I in HEPES at a concentration of 5mg/mL is diluted 10 times: final concentration = 0.5 mg/mL). After incubation of 1 h at room temperature, unbound protein was washed away by rinsing with MilliQ water and the surface was dried.

Analytical instrumentation

Raman spectroscopy. Spectra were acquired using a confocal Raman microscope (CRM300, WITEC, Germany) equipped with an objective from Nikon (100x, N_A = 0.26) and a linear polarized laser (diode pumped Green laser, λ = 532 nm, CrystaLaser). The Raman light was detected by a CCD camera (DV401-BV, Andor), behind a grating (600 g/mm) spectrometer (UHTS 300, WITEC).

Fourier-transform infrared (FT-IR) spectroscopy. Spectra were acquired using Varian resolutions 4.1.0.101 on Varian Scimitar 1000 FT-IR with ATR golden gate from Pike (diamond crystal).

Contact angle measurements. Contact angles were measured by using a contact angle measuring system G10 from Kruess. Contact angles were determined by placing a drop of water from a syringe, advancing the periphery of the drop by adding more liquid, withdrawing the syringe, and measuring the contact angle within <10 s of application of the drop. Measurements were done at room temperature. Reported values are averages of three measurements taken at different points on the surface.

Scanning force microscopy (SFM). Images were collected in tapping mode using an AFM-Dimension 3100 produced by Veeco. The tips are used with a frequency of ~285 kHz and a spring constant of 42 N/m.

Fluorescence microscopy (FM). A microscope Olympus IX71 with an objective epiplan Neofluar (20x/0.50) was used to characterize the fluorescent glass slides. A camera Hamamatsu C5810 (color chilled 3CCD, 0.63x) was used to take the pictures.
Figure S1. FT-IR spectra of the (a) piranha-treated glass slide and (b) sulfhydrylated glass slide Glass-SH.

Figure S2. Raman spectra (top) and chemical image (confocal Raman microscopy, 10x10 µm², integration of SH absorption from 2545 to 2586 cm⁻¹, 50 points/line, 50 lines/image, retrace: 0.05 s, integration time: 1s) (bottom) of (a) the piranha-treated glass slide and (b) the sulfhydrylated glass slide, Glass-SH.

Figure S3. Photographs and contact angles (θ) of water droplets on the (a) piranha-treated glass slide and (b) sulfhydrylated glass slide Glass-SH before and after washing.
Figure S4. Representative SFM (tapping mode) height images of the (a) pirhana-treated glass slide and (b) sulfhydrylated glass slide Glass-SH. Section analysis shows a region of Glass-SH where the MPTMS layer was scratched off with the tip.

Figure S5. Raman spectra of the (a) glucosylated glass slide Glass-Glc and b) polybutadiene-coated glass slide Glass-PB.
Figure S6. FT-IR spectra of the (a) PMAA-grafted glass slide Glass-PMAA (b) fluorinated glass slide Glass-F, (c) glucosylated glass slide Glass-Glc, and (d) PB-coated glass slide Glass-PB.

Figure S7. Photographs and contact angles (θ) of water droplets on the (a) PMAA-grafted glass slide Glass-PMAA, (b) perfluorinated glass slide Glass-F, (c) PB-coated glass slide Glass-PB, (d, e) glucosylated glass slides Glass-Glc and Glass-PB-Glc.
Figure S8. SFM (tapping mode) height image of the scratched PMAA-grafted glass slide Glass-PMAA; height difference = thickness(PMAA) + thickness(MPTMS).

Figure S9. SFM (tapping mode) height images of the scratched PB-coated glass slide Glass-PB; height difference = thickness(PB) + thickness(MPTMS).
Sulfhydrylation of glass slides with MPTMS (alternate procedure). Slides were placed in inert flasks, followed by the addition of distilled THF and MPTMS (to create solutions containing 0.1 vol% to 5 vol% MPTMS) and then 0.4 vol% HCl (37 %). Total solution volume was always 10 mL. Solutions were kept for 24 h at room temperature. Slides were then removed from the solutions and subjected to a sequential washing regime consisting of water, dichloromethane, toluene, hexane, acetone, and again dichloromethane. Slides were then dried at 70°C for 3 hours.

Figure S10. Representative SFM (tapping mode) height images of glass slides prepared sulfhydrylation with MPTMS at different concentrations (alternate procedure); R_g: root-mean-square roughness.