Luminogenic Polyacetylenes and Conjugated Polyelectrolytes: Synthesis, Hybridization with Carbon Nanotubes, Aggregation-Induced Emission, Superamplification in Emission Quenching by Explosive, and Fluorescent Assay for Protein Quantitation

Wang Zhang Yuan,†,§ Hui Zhao,§ Xiao Yuan Shen,§ Faisal Mahtab,†,ξ Jacky W. Y. Lam,†,ξ Jing Zhi Sun,§
and Ben Zhong Tang*,†,ξ,‡

† Department of Chemistry, Nanoscience and Nanotechnology Program, Bioengineering Graduate Program, Institute of Molecular Functional Materials, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China,
§ HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, China and ξ Department of Polymer Science and Engineering, Institute of Biomedical Macromolecules, Key Laboratory of Macromolecular Synthesis and Functionalization of the Ministry of Education of China, Zhejiang University, Hangzhou 310027, China

* Corresponding author. Phone: +852-2358-7375; Fax: +852-2358-1594; E-mail: tangbenz@ust.hk.
Figure S1. 1H NMR spectra of (A) monomer 1 and (B) its polymer P1 (sample taken from Table 1, no. 5) in dichloromethane-d_2 at room temperature. The solvent and water peaks are marked with asterisks.

Figure S2. 1H NMR spectrum of P1 (from Table 1, no. 5) in dichloromethane-d_2 at room temperature.
Figure S3. 1H NMR spectrum of P1 (sample taken Table 1, no. 5) in the range of δ 5.0–8.0 in DMSO-d_6 at room temperature.

Figure S4. 13C NMR spectra of (A) monomer 1 and (B) its polymer P1 (sample taken from Table 1, no. 5) in chloroform-d at room temperature. The solvent peaks are marked with asterisks.
Figure S5. IR spectra of (A) monomer 2 and (B) its polymer P2 (sample taken from Table 1, no. 12).

Figure S6. 1H NMR spectra of (A) monomer 2 and (B) its polymer P2 (sample taken from Table 1, no. 12) in chloroform-d at room temperature. The solvent and water peaks are marked with asterisks.
Figure S7. 13C NMR spectra of (A) monomer 2 and (B) its polymer P2 (sample taken from Table 1, no. 12) in chloroform-d at room temperature. The solvent peaks are marked with asterisks.

Figure S8. TGA thermograms of P1 and P2 measured under nitrogen at a scanning rate of 20 °C/min.
Figure S9. Emission spectra of P2 in different solvents; $c = 20 \, \mu\text{M}, \lambda_{\text{ex}} = 400 \, \text{nm}$.

Chart S1

Figure S10. (A) Emission spectra of 2^+ in aqueous phosphate buffer (pH = 7.0) at different luminogen concentrations; $\lambda_{\text{ex}} = 400 \, \text{nm}$. (B) Effect of concentration of emission intensity at 559 nm.
Figure S11. Photographs of 2⁺ in aqueous phosphate (pH = 7.0) at different luminogen concentrations (μg/mL) taken under room lighting (upper panel) and 365 nm UV light illumination (lower panel).

Figure S12. Photographs of THF solutions of (A) 2 and (B) P2 at different luminogen concentrations (μg/mL) taken under room lighting (upper panel) and UV light illumination (lower panel).