Ordered Cubic Mesoporous Silicas with Large Pore Sizes

Synthesized via High-Temperature Route

Pengling Zhang,† Zhuofu Wu,‡ Ni Xiao,† Limin Ren,† Xiangju Meng,*† Chunyu Wang,§ Fei Li,§ Zhengqiang Li‡ and Feng-Shou Xiao*†

†State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China, Email: supermengxi@hotmail.com; fsxiao@mail.jlu.edu.cn

‡Key Lab for Molecular Enzymology and Engineering The Ministry of Education, Jilin University, Changchun, 130023, China

§State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, P. R. China.
Supporting Figure Captions:

Figure S1 Small angle X-ray scatting patterns with vertical axis in linear form for (a) conventional SBA-16, (b) LP-SBA-16\textsubscript{180}, (c) LP-SBA-16\textsubscript{200}, and (d) LP-SBA-16\textsubscript{220} samples.

Figure S2 TEM images for (a) LP-SBA-16\textsubscript{200} and (b) LP-SBA-16\textsubscript{220} samples.

Figure S3 Pore size distribution for (a) conventional SBA-16, (b) LP-SBA-16\textsubscript{180}, (c) LP-SBA-16\textsubscript{200}, and (d) LP-SBA-16\textsubscript{220} samples based on adsorption branch (Left) and desorption branch (Right).

Figure S4 Structure illustration of myoglobin.

Figure S5 1H NMR spectrum and assignments for triblock polymer F127 in acidic aqueous solution.

Figure S6 29Si MAS NMR spectra of conventional SBA-16 synthesized at 100 °C for 24h.
Figure S1
Figure S2
Figure S3
Figure S4
Figure S5

$\text{HO(\text{CH}_2\text{CH}_2\text{O})_{106}(\text{HCCH}_3\text{CH}_2\text{O})_{70}(\text{CH}_2\text{CH}_2\text{O})_{106}\text{H}}$

ppm
Figure S6