Supporting information for

H$_2$S$_{(g)}$ removal using a modified, low-pH liquid redox sulfur recovery (LRSR) process with electrochemical regeneration of the Fe catalyst couple

Youri Gendel, No'omi Levi and Ori Lahav*

Faculty of Civil and Environmental Engineering, Technion, Haifa, 32000, Israel.

* Corresponding author, E-mail: agori@techunix.technion.ac.il, Tel: 972 4 8292191, Fax: 972 4 8228898.

Environmental Science and Technology

September 11, 2009

Figure S1. Schematic of the proposed process

Figure S2. Schematic of the laboratory system used in the Fe(II) electrochemical oxidation study.

Figure S3. H$_2$S$_{(g)}$ removal efficiency in a bubble column reactor as a function of the H$_2$S$_{(g)}$

concentration, normalized gas flux and Fe(III) concentration

Table S1. Experimental conditions applied in H$_2$S$_{(g)}$ reactive absorption experiments
Figure S1. Schematic of the proposed process

2Fe$^{3+}$ + 2e$^-$ → 2Fe$^{2+}$

H$_2$S → 2H$^+$ + S$_0$ + 2e$^-$

Electrolytic cell (Fe$^{3+}$ regeneration)

Hydrogen (H$_2$)

Elemental sulfur (S$_0$)

Treated gas

H$_2$S$_{(g)}$ contaminated gas

H$_2$S$_{(g)}$ absorption

Electrolytic cell

Fe$^{3+}$

H$_2$

Fe$^{2+}$

H$^+$

S0 separation

Elemental sulfur (S$_0$)

Hydrogen (H$_2$)

Treated gas

H$_2$S$_{(g)}$ contaminated gas

H$_2$S$_{(g)}$ absorption
Figure S2. Schematic of the laboratory system used in the Fe(II) electrochemical oxidation study. 1- Chlorine trap; 2- Electrolyte holding vessel; 3- Flow-through electrolysis cell; 4- Peristaltic pump; 5- DC power supply
Figure S3. $\text{H}_2\text{S}_\text{(g)}$ removal efficiency in a bubble column reactor as a function of the $\text{H}_2\text{S}_\text{(g)}$ concentration, normalized gas flux and Fe(III) concentration (for detailed experimental conditions see Tests I and II in Table S1)
Table S1. Experimental conditions applied in $\text{H}_2\text{S}_\text{(g)}$ reactive absorption experiments

<table>
<thead>
<tr>
<th>Test #</th>
<th>[Fe$^{3+}$]</th>
<th>[Fe$^{2+}$]</th>
<th>[Cl$^-$]</th>
<th>pH_0</th>
<th>Reactor Volume</th>
<th>[H2S(g)]</th>
<th>Gas flow rate, (L min^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1.72</td>
<td>20</td>
<td>5, 9.85, 20, 30</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2, 3, 9, 20, 30</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>4.5</td>
<td>0</td>
<td>0</td>
<td>1.72</td>
<td>20</td>
<td>6, 23, 34, 57</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4, 22, 30, 37</td>
<td>25</td>
</tr>
<tr>
<td>III</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>1.0</td>
<td>15</td>
<td>7, 20, 37, 53</td>
<td>16.5</td>
</tr>
<tr>
<td>IV</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>1.0</td>
<td>15</td>
<td>7, 19, 33, 46</td>
<td>16.5</td>
</tr>
<tr>
<td>V</td>
<td>9</td>
<td>1</td>
<td>30</td>
<td>1.0</td>
<td>15</td>
<td>7.5, 18.3, 38, 57</td>
<td>16.5</td>
</tr>
<tr>
<td>VI</td>
<td>9</td>
<td>1</td>
<td>50</td>
<td>1.0</td>
<td>15</td>
<td>5.5, 18, 40, 54</td>
<td>16.5</td>
</tr>
<tr>
<td>VII</td>
<td>9</td>
<td>1</td>
<td>30</td>
<td>1.38</td>
<td>15</td>
<td>8, 20.5, 34.5, 51</td>
<td>16.5</td>
</tr>
<tr>
<td>VIII</td>
<td>9</td>
<td>1</td>
<td>30</td>
<td>1.74</td>
<td>15</td>
<td>5.5, 15.3, 32, 47</td>
<td>16.5</td>
</tr>
</tbody>
</table>