Conjugated Thiophene-Containing Oligoacenes Through Photocyclization: Bent Acenedithiophenes and a Thiahelicene

Agostino Pietrangelo, Brian O. Patrick, Mark J. MacLachlan*, and Michael O. Wolf*

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC. V6T 1Z1

mmaclach@chem.ubc.ca, mwolf@chem.ubc.ca

Supporting Information
Table of Contents

Experimental Section

Figure S1. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 3e.

Figure S2. 13C NMR Spectrum (100 MHz, CD$_2$Cl$_2$) of compound 3e.

Figure S3. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 4e.

Figure S4. 13C NMR Spectrum (100 MHz, CD$_2$Cl$_2$) of compound 4e.

Figure S5. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 5e.

Figure S6. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 6.

Figure S7. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 7.

Figure S8. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 8.

Figure S9. 13C NMR Spectrum (100 MHz, CD$_2$Cl$_2$) of compound 8.

Figure S10. 1H-1H COSY NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 8.

Figure S11. 1H-1H COSY NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 8.

Figure S12. ORTEP of compound 3b.

Figure S13. ORTEP of compound 5b.

Figure S14. ORTEP of compound 5c.

Figure S15. ORTEP of compound 5d.

Figure S16. ORTEP of compound 5e.

Figure S17. ORTEP of compound 8.

Figure S18. UV-vis absorption spectra of 3a-e and 4a-e.

Figure S19. UV-vis absorption spectrum of 5e.

References
General Experimental

All photochemical reactions were carried out in a photoreactor equipped with 16 RPR-3000 Å (300 nm, 21 W) lamps. 1H NMR spectra (300 or 400 MHz) are referenced to the residual protonated solvent at δ 5.32 for deuterated dichloromethane (CD$_2$Cl$_2$) and δ 7.24 for deuterated chloroform (CDCl$_3$). All 13C NMR experiments were carried out in CD$_2$Cl$_2$ and referenced at δ 54.00. Solution absorption spectra were obtained in dichloromethane (DCM, CH$_2$Cl$_2$) on a UV-vis-near-IR spectrophotometer using a 1 cm quartz cuvette. IR spectra were obtained on powder samples (neat) or from KBr dispersions. Powder X-ray diffraction measurements were carried out using a diffractometer with graphite monochromated Cu-Kα radiation. Fluorescence spectra were obtained in DCM using a 1 cm quartz cuvette. Quantum yields were referenced to a solution of anthracene in EtOH ($\Phi_f = 0.3$).1 Electron ionization (EI) mass spectra were obtained at the UBC Mass Spectrometry facility. Elemental analyses were obtained at the UBC Microanalytical facility.

Films of BADTs 5a-d were prepared by vacuum evaporation onto cover glass substrates at temperatures between 150 and 200 °C at a pressure of ~0.1 to 1 Torr. The substrate temperature was not controlled but was ca. 25 °C. All glass substrates were cleaned with a sulfuric acid/hydrogen peroxide mixture (4:1) prior to use in order to remove surface organic contaminants. Solid-state absorption spectra of 5a-d were obtained from drop-cast films deposited from DCM solutions onto cover glass substrates.
Supplemental Spectra

Figure S1. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 3e.

Figure S2. 13C NMR Spectrum (100 MHz, CD$_2$Cl$_2$) of compound 3e.
Figure S3. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 4e.

Figure S4. ^{13}C NMR Spectrum (100 MHz, CD$_2$Cl$_2$) of compound 4e.
Figure S5. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 5e.

Figure S6. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 6.
Figure S7. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 7.

Figure S8. 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 8.
Figure S9. 13C NMR Spectrum (100 MHz, CD$_2$Cl$_2$) of compound 8.

Figure S10. 1H-1H COSY NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 8.
Figure S11. 1H-1H COSY NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of compound 8.

Figure S12. Thermal ellipsoid plot of the solid-state structure of compound 3b as determined by SCXRD.
Figure S13. Thermal ellipsoid plot of the solid-state structure of compound 5b as determined by SCXRD.

Figure S14. Thermal ellipsoid plot of the solid-state structure of compound 5c as determined by SCXRD.
Figure S15. Thermal ellipsoid plot of the solid-state structure of compound 5d as determined by SCXRD.

Figure S16. Thermal ellipsoid plot of the solid-state structure of compound 5e as determined by SCXRD.
Figure S17. Thermal ellipsoid plot of the solid-state structure of compound 8 as determined by SCXRD.
Figure S18. Normalized solution phase UV-vis absorption spectra of (a) 3a-e and (b) 4a-e at ca. 25 °C.
Figure S19. UV-vis absorption spectrum of 5e at ca. 25 °C.

References