Supporting Information

Probing the Dynamic Environment-Associated Conformational Conversion from Secondary to Supersecondary Structures in Oligo(Phenanthroline Dicarboxamide)s

Hai-Yu Hu, a,b Wei Xue, a,b Zhi-Qiang Hu, a Jun-Feng Xiang, a Chuan-Feng Chen, a,* and Sheng-Gui He a,*

a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. b Graduate School, Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn

Contents

1. General Methods ---S2

2. 1H NMR and 13C NMR Spectra of New Compounds--------------------------------------S3

3. TOCSY and NOESY Spectra of Compounds 5~7--S6

4. Variable-Temperature 1H NMR Studies on Oligomers 1~4 and 1a~4a----------------S12

5. CD Spectra of Oligomers 1~4 at Various Concentrations in Various Solvents-------S20

6. CD and Absorption Spectra of Oligomers 1~4 at Various Temperatures-------------S27
1. General Methods

Melting points, taken on an electrothermal melting point apparatus, are uncorrected. 1H and 13C NMR spectra were obtained in CDCl$_3$ solution (chemical shifts in ppm relative to internal TMS, J in Hertz). Mass spectra were obtained by MALDI-TOF technique. The CD spectra were obtained with a Jasco J-815 spectropolarimeter. The CDCl$_3$ solvent used in NMR experiment was dealt with basic aluminum oxide (for chromatographic use) and the other materials obtained commercially were used without further purification.
2. 1H NMR and 13C NMR Spectra of New Compounds

![Figure S1. The 1H NMR spectrum of compound 5.](image)

![Figure S2. The 13C NMR spectrum of compound 5.](image)
Figure S3. The 1H NMR spectrum of compound 6.

Figure S4. The 13C NMR spectrum of compound 6.
Figure S5. The 1H NMR spectrum of compound 7.

Figure S6. The 13C NMR spectrum of compound 7.
3. TOCSY and NOESY Spectra of Compounds 5~7

Figure S7. The TOCSY spectrum (600 MHz, CDCl₃) of compound 5.
Figure S8. The NOESY spectrum (600 MHz, CDCl₃) of compound 5.
Figure S9. The TOCSY spectrum (600 MHz, CDCl$_3$) of compound 6.
Figure S10. The NOESY spectrum (600 MHz, CDCl₃) of compound 6.
Figure S11. The TOCSY spectrum (600 MHz, CDCl₃) of compound 7.
Figure S12. The NOESY spectrum (600 MHz, CDCl₃) of compound 7.
4. Variable-Temperature 1H NMR Studies on Oligomers 1~4 and 1a~4a

Figure S13. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 1.
Figure S14. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 1a.
Figure S15. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 2.
Figure S16. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 2a.
Figure S17. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 3.
Figure S18. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 3a.
Figure S19. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 4.
Figure S20. Temperature dependent 1H NMR spectra (600 MHz, CDCl$_3$) of 4a.
5. CD Spectra of Oligomers 1~4 at Various Concentrations in Various Solvents

Figure S21. CD spectra of 1 in CH$_3$OH at various concentrations.

Figure S22. CD spectra of 2 in CH$_3$OH at various concentrations.
Figure S23. CD spectra of 3 in CH$_3$OH at various concentrations.

Figure S24. CD spectra of 4 in CH$_3$OH at various concentrations.
Figure S25. CD spectra of 1 in CH$_2$Cl$_2$ at various concentrations.

Figure S26. CD spectra of 2 in CH$_2$Cl$_2$ at various concentrations.
Figure S27. CD spectra of 3 in CH$_2$Cl$_2$ at various concentrations.

Figure S28. CD spectra of 4 in CH$_2$Cl$_2$ at various concentrations.
Figure S29. CD spectra of 1~4 (5 \times 10^{-5} M) in CH$_2$Cl$_2$.

Figure S30. CD spectra of 1 in DMSO at various concentrations.
Figure S31. CD spectra of 2 in DMSO at various concentrations.

Figure S32. CD spectra of 3 in DMSO at various concentrations.
Figure S33. CD spectra of 4 in DMSO at various concentrations.

Figure S34. CD spectra of 1~4 (5 × 10⁻⁵ M) in DMSO.
6. CD and Absorption Spectra of Oligomers 1~4 at Various Temperatures

Figure S35. CD and absorption spectra (2.0×10⁻⁵ M) of oligomer 1 in acetonitrile at various temperatures.

Figure S36. CD and absorption spectra (2.0×10⁻⁵ M) of oligomer 3 in acetonitrile at various temperatures.
Figure S37. (a) CD and absorption spectra (2.0×10^{-5} M) of oligomer 4 in acetonitrile at various temperatures. (b) Plots of CD intensity at 363nm versus temperature.

In contrast, with lowering of the temperature, the molar CD values of oligomer 2 in methanol increased. Temperature-dependent CD measurements demonstrated that the helical conformation is stable for oligomer 2 in both of the acetonitrile and methanol solvents.

Figure S38. CD and absorption spectra (5.0×10^{-5} M) of oligomer 2 in methanol at various temperatures.
Figure S39. CD and absorption spectra (5.0×10^{-5} M) of oligomer 3 in methanol at various temperatures.

Figure S40. CD and absorption spectra (5.0×10^{-5} M) of oligomer 4 in methanol at various temperatures.