Temperature-Induced Intracellular Uptake of Thermoresponsive Polymeric Micelles

Jun Akimotoa, b, Masamichi Nakayamaa, Kiyotaka Sakaib, and Teruo Okanoa

a Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, Kawada-cho 8-1, Shinjuku, Tokyo 162-8666, Japan

b Department of Applied Chemistry, Waseda University,

Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan
1. Characterization of polymers

Figure S1. 1H-NMR spectra (in CDCl$_3$) of (a) TBT-P(IPAAm-co-DMAAm)-OH, (b) TBT-P(IPAAm-co-DMAAm)-b-PLA, (c) Mal-terminated P(IPAAm-co-DMAAm)-b-PLA, and (d) OG-terminated P(IPAAm-co-DMAAm)-b-PLA.
Figure S2. GPC curves of thermoresponsive polymers.

Figure S3. UV spectra of TBT-P(IPAAm-co-DMAAm)-b-PLA block copolymers before and after terminal maleimide modification.
Characterization of thermoresponsive polymeric micelles

Figure S4 Fluorescence spectrum of OG-labeled thermoresponsive polymeric micelles in water. \(\lambda_{\text{ex}}=495\text{nm} \).

Figure S5 Size distribution of OG-labeled thermoresponsive polymeric micelles in the presence of bovine serum albumin (BSA) at temperatures (a) below (37°C) and (b) above (42°C) the LCST in DPBS(-). [polymer]=0.2mg/mL, [BSA]=1mg/mL.
Figure S6 Flow cytometric fluorescence histograms of bovine carotid endothelial cells incubated with or without OG-labeled thermoresponsive polymeric micelles for 24 h. (a) Basal fluorescence of the cells, (b) below (37°C) and (c) above (42°C) the micelle LCST.