Structural transitions and flexibility during dehydration-rehydration process in the MOF-type aluminum pyromellitate Al$_2$(OH)$_2$[C$_{10}$O$_8$H$_2$] (MIL-118).

Christophe Volkringer,† Thierry Loiseau,†* Nathalie Guillou,† Gérard Férey,†‡ Mohamed Haouas,§ Francis Taulelle,§ Nathalie Audebrand,‖ Irene Margiolaki,┴ Dmitry Popov,┴ Manfred Burghammer,┴ Christian Riekel.┴

Contribution from the Institut Lavoisier (UMR CNRS 8180), Institut Universitaire de France, Porous Solids Group & Tectospin Group, Université de Versailles Saint Quentin en Yvelines, 45, avenue des Etats-Unis, 78035 Versailles, Sciences Chimiques de Rennes (UMR CNRS 6226), Université de Rennes 1, avenue du Général Leclerc, 35042 Rennes cedex and ESRF, 6, rue Jules Horowitz, B.P. 220, 38043 Grenoble cedex, France

* To whom correspondence should be addressed. E-mail: loiseau@chimie.uvsq.fr. Phone: (33) 1 39 254 373. Fax: (33) 1 39 254 358

SUPPLEMENTARY MATERIALS

To be submitted to Crystal Growth & Design
Revised version april 7, 2009
Figure S1: IR spectrum of the as-synthesized aluminum pyromellitate MIL-118A. It was recorded on a Nicolet 550 FTIR spectrometer at room temperature in the range 400-4000 cm\(^{-1}\), using a potassium bromide pellet.
Figure 6: Thermodiffractogram of the aluminum pyromellitate MIL-118A (top) showing the phase transition into the dehydrated form MIL-118B occurring at 170-180°C and the phase transition (bottom) of the hydrated solid MIL-118C into the dehydrated form MIL-118B. The red patterns correspond to MIL-118B, blue patterns of the top diffractogram correspond to MIL-118A and those of the bottom one correspond to MIL-118C (under air atmosphere, copper radiation).
Figure S2: 1H{27Al} TRAPDOR difference NMR spectrum of MIL-118A, acquired at room temperature without and with on-resonance 27Al irradiation during τ ($\tau = 33$ μs, spinning speed $= 30$ kHz).
Figure S4: Contour plot of 27Al 3QMAS NMR spectrum of MIL-118C collected at 11.7 T showing the two signals, Al1 and Al2, of the framework aluminum sites. Simulations of 2D slices, F1 and F2 projections as well as selected rows are presented.