Supporting Information

Investigation of Solvent-free MALDI-TOFMS Sample Preparation Methods for the Analysis of Organometallic and Coordination Compounds

Laura Hughes, Mark F. Wyatt,* Bridget K. Stein and A. Gareth Brenton

EPSRC National Mass Spectrometry Service Centre (NMSSC), Institute of Mass Spectrometry (IMS), School of Medicine, Swansea University, Swansea SA2 8PP, U. K.

*Address reprint requests and correspondence to M. F. Wyatt; E-mail: m.f.wyatt@swansea.ac.uk; Tel: +44 (0) 1792 295653; Fax: +44 (0) 1792 295554.

Contents

Page S3. Figure S1. MALDI-TOFMS data for various quantities of V(acac)₃ with DCTB matrix, prepared by method A1.
Page S4. Figure S2. MALDI-TOFMS data for various quantities of V(acac)₃ with DCTB matrix, prepared by method B1.
Page S5. Figure S3. MALDI-TOFMS data for various quantities of V(acac)₃ with DCTB matrix, prepared by method B'1.
Page S6. Figure S4. MALDI-TOFMS data for various quantities of V(acac)₃ with TCNQ matrix, prepared by method A1.
Page S7. Figure S5. MALDI-TOFMS data for various quantities of V(acac)₃ with TCNQ matrix, prepared by method B1.
Page S8. Figure S6. MALDI-TOFMS data for various quantities of V(acac)₃ with TCNQ matrix, prepared by method B'1.
Page S9. Figure S7. MALDI-TOFMS data for various quantities of Fe(acac)₂ with DCTB matrix, prepared by method A1.
Page S10. Figure S8. MALDI-TOFMS data for various quantities of Fe(acac)₂ with DCTB matrix, prepared by method B1.
Page S11. Figure S9. MALDI-TOFMS data for various quantities of Fe(acac)₂ with DCTB matrix, prepared by method B'1.
Page S12. Figure S10. MALDI-TOFMS data for various quantities of Fe(acac)₂ with TCNQ matrix, prepared by method A1.
Page S13. Figure S11. MALDI-TOFMS data for various quantities of Fe(acac)₂ with TCNQ matrix, prepared by method B1.
Page S14. Figure S12. MALDI-TOFMS data for various quantities of Fe(acac)₂ with TCNQ matrix, prepared by method B'1.
Figure S13. MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB and TCNQ matrices, prepared by method B3.

Figure S14. MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB and TCNQ matrices, prepared by method B4.

Figure S15. MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB and TCNQ matrices, prepared by method B5.

Figure S16. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB and TCNQ matrices, prepared by method B3.

Figure S17. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB and TCNQ matrices, prepared by method B4.

Figure S18. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB and TCNQ matrices, prepared by method B5.

Figure S19. MALDI-TOFMS data for 0.2 mg of V(acac)$_3$ and with DCTB matrix, and with various quantities of KBr (method B2').

Figure S20. MALDI-TOFMS data for 0.2 mg of Fe(acac)$_2$ with DCTB matrix, and with various quantities of KBr (method B2').

Figure S21. Light microscopy image of a typical DCTB sample prepared by method 5.

Figure S22. MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB matrix, prepared by methods B'5 and B''5.

Figure S23. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB matrix, prepared by methods B'5 and B''5.

Figure S24. Light microscopy image of a typical PFBA sample prepared by method 5.
Figure S1. MALDI-TOFMS data for various quantities of V(acac)₃ with DCTB matrix, prepared by method A1.

- 0.1 mg
- 0.2 mg
- 0.5 mg
- 1.0 mg
**Figure S2.** MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB matrix, prepared by method B1.
**Figure S3.** MALDI-TOFMS data for various quantities of V(acac)_3 with DCTB matrix, prepared by method B’1.
Figure S4. MALDI-TOFMS data for various quantities of V(acac)₃ with TCNQ matrix, prepared by method A1.
Figure S5. MALDI-TOFMS data for various quantities of V(acac)$_3$ with TCNQ matrix, prepared by method B1.
Figure S6. MALDI-TOFMS data for various quantities of V(acac)$_3$ with TCNQ matrix, prepared by method B’.1.
Figure S7. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB matrix, prepared by method A1.
Figure S8. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB matrix, prepared by method B1.

0.1 mg

0.2 mg

0.5 mg

1.0 mg
Figure S9. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB matrix, prepared by method B’1.
Figure S10. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with TCNQ matrix, prepared by method A1.

0.1 mg

0.2 mg

0.5 mg

1.0 mg
**Figure S11.** MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with TCNQ matrix, prepared by method B1.
Figure S12. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with TCNQ matrix, prepared by method B’1.
Figure S13. MALDI-TOFMS data for various quantities of V(acac)₃ with DCTB and TCNQ matrices, prepared by method B3.
Figure S14. MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB and TCNQ matrices, prepared by method B4.
Figure S15. MALDI-TOFMS data for various quantities of V(acac)₃ with DCTB and TCNQ matrices, prepared by method B5.
Figure S16. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB and TCNQ matrices, prepared by method B3.
Figure S17. Figure S16. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB and TCNQ matrices, prepared by method B4.
Figure S18. Figure S16. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB and TCNQ matrices, prepared by method B5.
Figure S19. MALDI-TOFMS data for 0.2 mg of V(acac)₃ and with DCTB matrix, and with various quantities of KBr (method B₂').
**Figure S20.** MALDI-TOFMS data for 0.2 mg of and Fe(acac)$_2$ with DCTB matrix, and with various quantities of KBr (method B2').

**Figure S21.** Light microscopy image of a typical DCTB sample prepared by method 5.
Figure S22. MALDI-TOFMS data for various quantities of V(acac)$_3$ with DCTB matrix, prepared by methods B``5 and B```5.
Figure S23. MALDI-TOFMS data for various quantities of Fe(acac)$_2$ with DCTB matrix, prepared by methods B\`5 and B\`\`5.

- 0.2 mg, B\`5
- 0.5 mg B\`5
- 0.2 mg, B\`\`5
- 0.5 mg B\`\`5
Figure S24. Light microscopy image of a typical PFBA sample prepared by method 5.