Supporting Information

On the transition between a heterogeneous and homogeneous corona in mixed polymeric micelles

Ilja K. Voets,*† Remco Fokkink,† Arie de Keizer,† Roland May,§ Pieter de Waard,¥ and Martien A. Cohen Stuart†

†Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands

§Institut Max von Laue-Paul Langevin, F-38042 Grenoble Cedex 9, France

¥Wageningen NMR Centre, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands

*ilja.voets@wur.nl; remco.fokkink@wur.nl; arie.dekeizer@wur.nl; roland.may@ill.fr; pieter.dewaard@wur.nl; martien.cohenstuart@wur.nl
Small angle neutron scattering input parameters

PAA\textsubscript{42}-b-PAAm\textsubscript{417} / PAA\textsubscript{42} and P2MVP\textsubscript{42}-b-PEO\textsubscript{446} / P2MVP\textsubscript{43} mixtures were used in the SANS experiments to gradually vary the amount of EO / AAm monomers in the micellar corona, while keeping f_+ fixed at 0.5. Hence, for the C3Ms in this study, we may define a building block as a unit consisting of one equivalent PAA\textsubscript{x}-b-PAAm\textsubscript{y} polymer and one equivalent P2MVP\textsubscript{n}-b-PEO\textsubscript{m} polymer (with x / n including the AA / 2MVP monomers of both the homopolymer and the copolymer) so that $f_+ = 0.5$. For example, for 0% PAAm in the micellar corona ($f_{EO} = 0$), a building block consists of PAA\textsubscript{42} + P2MVP\textsubscript{43}-b-PEO\textsubscript{457} ($f_+ = 0.51$). A building block is present $P_{agg} = P_{agg}^+ = P_{agg}^-$ times in one particle. An overview of the coherent scattering length densities, ρ_N, specific volume, v_0, and molecular weights, M_w of the C3M building blocks is given in Table S1.

\textbf{Table S1.} Coherent neutron scattering length density in D\textsubscript{2}O, $\rho_N / 10^{10}$ cm-2, specific volume, $v_0 /$ cm3 g-1, molecular weight in D\textsubscript{2}O, $M_w /$ g mol-1, and specific refractive index increment in H\textsubscript{2}O, $dn / dc /$ cm3 g-1 of the building blocks of C3Ms of PAA\textsubscript{42}(-b-PAAm\textsubscript{417}) and P2MVP\textsubscript{42}(-b-PEO\textsubscript{446}) in D\textsubscript{2}O. Input values for ρ_N: 6.37 (D\textsubscript{2}O), 1.88 (PAAm in H\textsubscript{2}O), 4.15 (PAAm in D\textsubscript{2}O), 0.68 (PEO), 1.81 (PAA), 1.33 (P2(M)VP), 1.55 (P2VP in H\textsubscript{2}O), 2.15 (P2VP in D\textsubscript{2}O).20-22 Input values for dn / dc (mass-weighted additivity is assumed): 0.187 (PAAm), 0.136 (PEO), 0.261 (PAA), 0.27 (P2(M)VP).20-22

<table>
<thead>
<tr>
<th>f_{EO}</th>
<th>M_w</th>
<th>v_0</th>
<th>ρ_N</th>
<th>dn / dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28222</td>
<td>0.850</td>
<td>0.70</td>
<td>0.173</td>
</tr>
<tr>
<td>0.76</td>
<td>38845</td>
<td>0.825</td>
<td>1.19</td>
<td>0.177</td>
</tr>
<tr>
<td>0.52</td>
<td>58645</td>
<td>0.799</td>
<td>1.59</td>
<td>0.180</td>
</tr>
<tr>
<td>0.51</td>
<td>57632</td>
<td>0.798</td>
<td>1.61</td>
<td>0.181</td>
</tr>
<tr>
<td>0.26</td>
<td>45064</td>
<td>0.783</td>
<td>1.90</td>
<td>0.194</td>
</tr>
<tr>
<td>0</td>
<td>38795</td>
<td>0.770</td>
<td>2.10</td>
<td>0.204</td>
</tr>
</tbody>
</table>
2D 1H NMR NOESY

To demonstrate that chemically unlike protons of miscible segments give rise to observable NOE signals, we present a line plot at $\delta = 1.64 \pm 0.01$ ppm (= proton ‘13’, corresponding to PAAm) for C3Ms of PDMAEMA-b-PGMA and PAA-b-PAAm.\(^8\)

Amongst others, we clearly observe intermolecular NOE interactions with protons 9, 8, 10, and 7 (most pronounced), corresponding to the PGMA segments (Figure S1).

![Figure S1. Line plot at $\delta = 1.64 \pm 0.01$ ppm for C3Ms of PDMAEMA-b-PGMA and PAA-b-PAAm.](image)

Light scattering

Plots of Γ (Figure S2a), $R_0(\theta)$ (Figure S2b), and $R(\theta,C)$ (Figure S2c) as a function of q^2 for C3Ms of P2MVP$_{42}$($-b$-PEO$_{446}$) and PAA$_{42}(-b$-PAAm$_{417}$) for $0 < f_{EO} < 1$ (1mM NaNO$_3$ D$_2$O, T = 25 °C). The q^2-dependence of Γ in Figure S2a indicates diffusivity for all C3Ms. Deviations from linearity in the low-q regime in Figure S2b and Figure S2c are caused by dust, aggregate, and/or interparticle interference contributions to the scattering. The input parameters used to obtain P_{agg} and $M_{micelle}$ from the static light scattering experiments are tabulated in Table S1.

References

1-19. See main text
Figure S2. (a, b) Cumulant results. (a) Γ as a function of q^2 and (b) R_h^θ as a function of q^2 for C3Ms of P2MVP$_{42}$-b-PEO$_{446}$/P2MVP$_{43}$ and PAA$_{42}$-b-PAAm$_{417}$/PAA$_{42}$ (1mM NaNO$_3$, D$_2$O, T = 25 °C) with (Δ) 100% EO ($f_x = 0.51$, $C = 7.4$ g l$^{-1}$), (◊) 76% EO ($f_x = 0.51$, $C = 9.1$ g l$^{-1}$), (□) 52% EO ($f_x = 0.51$, $C = 11.6$ g l$^{-1}$), (○) 51% EO ($f_x = 0.51$, $C = 11.4$ g l$^{-1}$), (×) 26% EO ($f_x = 0.51$, $C = 9.1$ g l$^{-1}$), and (+) 0% EO ($f_x = 0.52$, $C = 7.9$ g l$^{-1}$) in the micellar corona. The lines represent (a) a linear extrapolation of Γ versus q^2 to $q^2 = 0$. Results in terms of R_h^θ are given in Table 2 in the main text. (c) Static light scattering results. $R(\theta,C)$ as a function of q^2 for the same mixtures. Results in terms of P_{agg} and R_g^θ are given in Table 2 in the main text.