Supporting Information

Exploring the Room-Temperature Synthesis and Properties of Multifunctional Doped Tungstate Nanorods

Fen Zhang1, Yuen Yiu2, M. C. Aronson2,3, and Stanislaus S. Wong1,3,*

\textbf{Email:} sswong@notes.cc.sunysb.edu; sswong@bnl.gov

1Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400

2Department of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3800

3Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Upton, NY 11973
Figure S1. TEM images of as-prepared pure alkaline-earth metal tungstate nanorods. (A) CaWO$_4$ nanorods, prepared using polycarbonate membranes with 200-nm pore diameters; (B) SrWO$_4$ nanorods, prepared using polycarbonate membranes with 100-nm pore diameters. (C) BaWO$_4$ nanorods, prepared using polycarbonate membranes with 50-nm pore diameters.
Figure S2. Simulated EDS spectra of alkaline earth tungstate materials.
Figure S3. UV-visible spectra of (A) MnCl$_2$ solution and (B) MnWO$_4$.
Figure S4. UV-visible spectra of (A) CaWO₄; (B) a physical mixture of CaWO₄ and MnWO₄; (C) SrWO₄; (D) a physical mixture of SrWO₄ and MnWO₄; (E) BaWO₄; (F) a physical mixture of BaWO₄ and MnWO₄.
Figure S5. Photoluminescence spectra of (A) a physical mixture of MnWO₄ and CaWO₄ nanorods (black), as well as pure CaWO₄ nanorods (red); (B) a physical mixture of MnWO₄ and SrWO₄ nanorods (black), as well as pure SrWO₄ nanorods (red); (C) a physical mixture of MnWO₄ and BaWO₄ nanorods (black), as well as pure BaWO₄ nanorods (red); (D) pure MnWO₄ nanorods alone.