Supporting Information

Molecular Engineering of Organic Sensitizers Containing p-Phenylene Vinylene Unit for Dye-Sensitized Solar Cells

Chulwoo Kim, a Hyunbong Choi, a Sanghoon Kim, a Chul Baik, a Kihyung Song, b Moon Sung Kang, c Sang Ook Kang, a,* and Jaejung Ko a,*

a Department of Chemistry, Korea University, Jochiwon, Chungnam 339-700, Korea and
b Department of Chemical Education, Korea National University of Education, Cheongwon, Chungbuk 363-791, Korea and
Energy & Environment Lab., Samsung Advanced Institute of Technology (SAIT), Yongin, 446-712, Korea.

Fax: 82 41 867 5396; Tel: 82 41 860 1337; E-mail: jko@korea.ac.kr

Table of Contents

General methods S3

1H NMR, 13C NMR spectra for compound 1 S4–S5

1H NMR, 13C NMR spectra for compound 2 S6–S7

1H NMR, 13C NMR and 31P NMR spectra for compound 3 S8–S10

1H NMR, 13C NMR and 31P NMR spectra for compound 4 S11–S13

1H NMR, 13C NMR and 31P NMR spectra for compound 5 S14–S16

1H NMR, 13C NMR spectra for compound 6 S17–S18

1H NMR, 13C NMR spectra for compound 7 S19–S20

S1
1H NMR, 13C NMR spectra for compound 8 S21–S22
1H NMR, 13C NMR spectra for compound 9 S23–S24
1H NMR, 13C NMR spectra for compound 10 S25–S26
1H NMR, 13C NMR spectra for compound 11 S27–S28
1H NMR, 13C NMR spectra for compound 12 S29–S30
1H NMR, 13C NMR spectra for compound 13 S31–S32
1H NMR, 13C NMR spectra for compound 14 S33–S34
1H NMR, 13C NMR spectra for compound 15 S35–S36
1H NMR, 13C NMR spectra for compound 16 S37–S38
Cyclic voltammetry of JK-59 sensitizer (Figure S1) S39
General methods

All reactions were carried out under an argon atmosphere. Solvents were distilled from appropriate reagents. 1,4-Bis(isopent-ox)-2-methylbenzene,\(^{15}\) 2-(bromomethyl)-1,4-bis(isopentoxy)benzene\(^{16}\) and diethyl (2,5-bis(isopentoxy)phenyl)methylphosphonate,\(^{17}\) diethyl(4-formyl-2,5-bis(isopentoxy)-phenyl)methylphosphonate,\(^{8}\) diethyl(2,5-bis(isopentoxy)-4-(5,5′-dimethyl-1,3-dioxan-2-yl)phenyl)methylphosphonate,\(^{18}\) and 2-iodo-9,9′-dimethylfluorene,\(^{19}\) 4-(N,N-Bis(9,9′-dimethylfluorene-2-yl))benzaldehyde\(^{20}\) were synthesized using a modified procedure of previous references. For general experimental details and instrumentation, see our previous publication.\(^{21}\)
1 (CDCl₃)

^{13}C
$\text{2 (CDCl}_3\text{)}$

^1H
$2 \text{ (CDCl}_3\text{)}$

^{13}C
$3\ (\text{CDCl}_3)$

^{13}C
^{31}P

$3 \text{ (CDCl}_3\text{)}$
$4 \text{ (CDCl}_3\text{)}$

1H
$4 \text{ (CDCl}_3\text{)}$

^{13}C
31P NMR spectrum of compound 4 (CDCl₃)
$\textbf{5 (CDCl}_3\textbf{)}$

^{13}C
^{31}P

5 (CDCl$_3$)
^{31}C

6 (CDCl$_3$)
1H NMR spectrum of compound 7 (CDCl$_3$)
$\text{7 (CDCl}_3\text{)}$

^{13}C
1H NMR (CDCl$_3$)
$8 \text{ (CDCl}_3\text{)}$

^{13}C
$9 \text{ (CDCl}_3\text{)}$

1H
$9_{(CDCl_3)}$

13C
^{1}H

$^{10} (CDCl_{3})$
\[\text{10 (CDCl}_3) \]

\[^{13}\text{C} \]
11 (CDCl₃)

^1H
11 (CDCl₃)

13C
12 (CDCl₃)

1H
13C
^{13}C

13 (CDCl$_3$)

S32
14 (CDCl₃)

^1H
15 (CDCl$_3$)

1H
15 (CDCl₃)

13C
16 (CDCl₃)

1H
^{13}C

16 (CDCl$_3$)

S38
Figure S1. Cyclic voltammogram of the JK-59 measured in THF solution containing 0.1M \((n-C_4H_9)_4NPF_6\) using a glassy carbon as a working and a Pt counter electrode with a scan rate of 50 mVs\(^{-1}\).