Supporting Information (No. of pages. (4))

Oxidation of Diclofenac with Ozone in Aqueous Solution

Myint Myint Seina*, Marco Zedda a,b, Jochen Tuerk b, Torsten C. Schmidta,

Alfred Gollocha, and Clemens von Sonntagc

*Corresponding author (myint.sein@uni-due.de)

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure_S1.png}
\caption{Figure S1. Competition plot based on formaldehyde formations for the reaction of ozone with buten-3-ol and diclofenac at pH = 7, T = 20 °C}
\end{figure}

Determination of the Rate Constant of Diclofenac with Ozone by Second-Order Kinetics

To obtain an accurate rate constant with this technique, it has to run with one of the reactants in large excess in order to drive the reaction into (pseudo) first-order kinetics. This is not possible in this case as both O\textsubscript{3} and diclofenac absorb strongly in the same wavelength region (O\textsubscript{3}: \(\lambda_{\text{max}} = 260\) nm, \(\varepsilon = 3300\) M-1 cm-1; diclofenac: \(\lambda_{\text{max}} = 276\) nm, \(\varepsilon = 11200\) M-1 cm-1).
Thus, we had to choose a less accurate method, in which equimolar reactant concentrations were used to give rise second-order kinetics. Equal volumes of 6×10^{-4} M O$_3$ and diclofenac were mixed in a stopped-flow set-up (Biologic), and the O$_3$ decay at 260 nm was followed as a function of time (Figure S2). From the data according to the second-order, a rate constant of 5.5×10^5 M$^{-1}$ s$^{-1}$ is obtained. This value is fraught with some error mainly due to some uncertainty in the actual O$_3$ concentration in the given experiment as O$_3$ continues to decay while setting up the experimental parameters in the stopped-flow experiment. As a consequence, the rate constant calculated on these data came out somewhat lower than the actual value, but comparable to the result obtained from the competition kinetics (6.8×10^5 M$^{-1}$ s$^{-1}$).

Figure S2. Reaction of equal concentrations of diclofenac and ozone (90 µM) followed at 260 nm in a stopped-flow experiment. The solid line is a fit according to second-order kinetics.
Figure S3. IR, NMR and MS spectra of the main reaction product, diclofenac-2,5-iminoquinone, in the reaction of diclofenac with ozone

Estimate of the Ozone Rate Constant with Diclofenac-2,5-iminoquinone. Along with the degradation of diclofenac by O$_3$ in the presence of t-BuOH (to scavenge 1OH), its main reaction product, diclofenac-2,5-iminoquinone first builds up and then is degraded as well. Its degradation starts when 10% of the original diclofenac concentration is still present at a molar ratio of O$_3$/diclofenac = 3:1 as can be seen in Fig. 1 (A) and (B), at which 2.5 µM diclofenac and 7.5 µM iminoquinone (and other products) compete effectively for O$_3$. Actually, it is necessary to have more data to calculate the rate constant of O$_3$ with the iminoquinone from this competition. A degradation of the iminoquinone would not yet be observed at this molar ratio of O$_3$/diclofenac if the rate constant of the iminoquinone with O$_3$ were much less than 10% of the one for diclofenac. As a conservative estimate of the iminoquinone degradation potential, we took a value of 5%.