Supporting Information for

N-Amidation by the Copper-Mediated Cross-coupling of Organostannanes and Boronic Acids with O-Acetyl

Hydroxamic Acids

Zhihui Zhang, Ying Yu † and Lanny S. Liebeskind *

Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322

chemLL1@emory.edu

Experimental procedures and compound characterizations

S-2-S-20

Photocopies of spectra

S-21-S-74

[†] Present address: Theravance, 901 Gateway Boulevard, South San Francisco, CA 94080

General Methods

All reactions were performed under an atmosphere of dry argon in oven-dried glassware. THF, DMA, DMF, and toluene were dried over 4Å molecular sieves and titrated for water level prior to use with a Fisher Coulomatic K-F titrater. hexanes, ethyl acetate (EtOAc), and diethyl ether (Et₂O) were obtained from Aldrich and used as purchased. 'Brine' refers to a saturated aqueous solution of NaCl. Purification by flash chromatography was performed using Whatman 60Å 230-400 mesh SiO₂ with compressed air as a source of positive pressure. Purification by preparative plate chromatography was performed on EM Science Kieselgel 0.5 mm or 1 mm 60F₂₅₄ plates. Analytical thin-layer chromatography (TLC) was carried out using Merck Kieselgel 60F₂₅₄ plates with visualization by UV or phosphomolybdic acid.

¹H NMR spectra were recorded on a INOVA 400 MHz NMR spectrometer at room temperature in CDCl₃ and were internally referenced to CDCl₃ (7.27 ppm); ¹³C NMR spectra were recorded on a 100 MHz NMR spectrometer at room temperature in CDCl₃ and were internally referenced to CDCl₃ (77.23 ppm). Data are reported in the following order: chemical shifts are given (δ); multiplicities are indicated (br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), hex (hextet), hept (heptet), m (multiplet), exch (exchangeable), app (apparent); coupling constants, *J*, are reported (Hz); integration is provided. Infrared spectra were recorded ASI ReactIR 1000FT-IR spectrometer with a silicone probe. Peaks are reported (cm⁻¹) with the following relative intensities: s (strong, 67-100%), m (medium, 40-67%), w (weak, 20-40%) and br (broad). GC-MS spectra were recorded on a Shimadzu Gas Chromatograph GC-17A, Mass Spectrometer QP-5000. GC/MS analysis was carried out on a bonded 5% diphenylsiloxane capillary column (30 m, 0.25 mm id, 0.25 μm df). Uncalibrated melting points were taken on a Thomas-Hoover melting point apparatus in open capillary tubes

Starting Materials

N-Benzoyl-*N*-phenylhydroxylamine, benzoyl chloride, benzohydroxamic acid, acetic anhydride, acetyl chloride, 2-thiophene carbonyl chloride, *t*-butylcarbonyl chloride, *p*-toluoyl chloride, *O*-methylhydroxylamine hydrochloride, phenylacetyl chloride, *m*-anisoyl chloride, *p*-nitrobenzoyl chloride, hydroxylamine hydrochloride, CuOAc, CuCl, CuI, CuCN, *p*-tolylboronic acid, phenylboronic acid, 2-phenyl-1,3,2-dioxaborinane, TiCl₄, Sc(OTf)₃, CuPF₆(CH₃CN)₄ and boron trifuoride etherate were purchased from Aldrich. All boronic acids except *p*-tolylboronic acid and phenylboronic acid were obtained from Frontier Scientific, Inc. All organostannanes were obtained from Synthonix. 1-Naphthohydroxamic acid and 2-picolinoyl

chloride hydrochloride were obtained from TCI America Inc. Copper(I) thiophene-2-carboxylate (CuTC)¹ and copper(I) diphenylphosphinate (CuDPP)² were prepared following the literature procedures.

O-Acetyl benzohydroxamic acid³

Benzohydroxamic acid (1.385 g, 10 mmol), CH₂Cl₂ (30 mL) and aqueous NaOH (2 M, 5.5 mL) were charged in a round bottomed flask. Ac₂O (1.12 g, 11 mmol) was added via syringe. After stirring at room temperature for 2 h, the CH₂Cl₂ layer was separated. The aqueous layer was extracted with CH₂Cl₂ (10 mL) and the combined CH₂Cl₂ layers were washed with brine and dried over MgSO₄. Evaporation of the solvent gave the product as a white solid (1.59 g. 89%), Mp 124-125 °C (ethyl ether, lit. {126.5 °C (hexanes/ether)}³), ¹H NMR (400 MHz, CDCl₃) δ 9.47 (s, 1 H), 7.84 (d, J = 7.2 Hz, 2 H), 7.59 (t, J = 7.6 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 2.31 (s, 3 H). IR (neat, cm⁻¹): 3147 (m), 2961 (m), 1793 (s), 1649 (s).

N-(2,2-Dimethyl-1-oxopropoxy)benzamide⁴

Benzohydroxamic acid (0.693 g, 5 mmol) was dissolved in THF (30 mL) in a round bottomed flask. t-Butylcarbonyl chloride (0.603 g, 5 mmol) was added via syringe, followed by Et₃N (0.607 g, 6 mmol). A white precipitate was observed. The suspension was stirred at room temperature for 2 h. Ethyl ether (20 mL) was added and the reaction was washed with water twice and then brine. After drying the organic layer over MgSO₄, evaporation of the solvent gave the product as an off-white solid. Recrystallization from hexanes/ether gave the product as a white solid in 72% yield (0.796 g). Mp 169-170 °C (lit. {170-171.5 °C}⁴). ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1 H), 7.80 (d, J = 7.6 Hz, 2 H), 7.54 (t, J = 7.6 Hz, 1 H), 7.43 (t, J = 7.6 Hz, 2 H), 1.35 (s, 9 H). IR (neat, cm⁻¹): 3204 (br), 2980 (s), 1783 (s), 1652 (s), 1517 (m), 1482 (m).

¹ Allred, G.; Liebeskind, L. S. J. Am. Chem. Soc. **1996**, 118, 2748-2749.

² Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. **2003**, *5*, 3033-3035.

³ Just, G.; Dahl, K. Tetrahedron **1968**, 24, 5251-5269.

⁴ Miller, M. J.; DeBons, F. E.; Loudon, G. M. J. Org. Chem. **1977**, 42, 1750-1761.

N-(4-Methylbenzoyloxy)benzamide⁵

Benzohydroxamic acid (0.693 g, 5 mmol) was dissolved in 1,4-dioxane (40 mL) in a round bottomed flask. Pyridine (0.400 g, 5 mmol) was added via syringe. After addition of p-toluoyl chloride (0.850 g, 5.5 mmol), a white precipitate was observed. The suspension was stirred at room temperature overnight. EtOAc (20 mL) was added and the reaction was washed with 1 M HCl, water and then brine. After drying the organic layer over MgSO₄, evaporation of the solvent gave a white solid. Recrystallization from hexanes/EtOAc gave the product as colorless needle-shape crystals in 75% yield (0.956 g). Mp 154-156 °C. 1 H NMR (400 MHz, CDCl₃) δ 9.86 (br, s, 1 H), 8.03 (d, J = 10.8 Hz, 2 H), 7.87 (d, J = 9.2 Hz, 2 H), 7.57 (t, J = 10 Hz, 1 H), 7.46 (t, J = 10 Hz, 2 H), 7.28 (d, J = 10.8 Hz, 2 H), 2.44 (s, 3 H). 13 C NMR (100 MHz, CDCl₃) δ 166.7, 165.5, 145.5, 132.9, 131.1, 130.3, 129.7, 129.0, 127.7, 123.9, 22.0. IR (neat, cm $^{-1}$): 3150 (m), 2953 (m), 1764 (s), 1706 (m), 1648 (s), 1583 (m). HRMS (FAB) Calcd for C₁₅H₁₃O₃NLi (M+Li $^{+}$): 262.1055. Found: 262.1058.

N-(Thiophene-2-carbonyloxy)benzamide⁶

Benzohydroxamic acid (0.693 g, 5 mmol) was dissolved in THF (20 mL) and CH_2Cl_2 (20 mL) in a round bottomed flask. 2-Thiophene carbonyl chloride (0.733 g, 5 mmol) was added to the solution via syringe, followed by Et_3N (0.607 g, 6 mmol). A white precipitate was observed. The suspension was stirred at 50 °C for 2 h after which CH_2Cl_2 (20 mL) was added and the reaction was washed with water twice then brine. After drying the organic layer over MgSO₄, evaporation of the solvent gave the product as a yellow solid. Recrystallization from hexanes/ether gave the product as light yellow crystals (1.0 g, 81%). Mp 131-132.5 °C (lit. {133-133.5 °C (EtOAc)}⁶). 1 H NMR (400 MHz, CDCl₃) δ 9.49 (br, s, 1 H), 8.02 (dd, J = 2.4, 1.2 Hz, 1 H), 7.86-7.88 (m, 2 H), 7.72 (dd, J = 3.6, 1.2 Hz, 1 H), 7.60 (tt, J = 7.2, 2.0 Hz, 1 H), 7.47-7.51 (m, 2 H), 7.19 (dd, J = 5.2, 4.0 Hz, 1 H). IR (neat, cm⁻¹): 3188 (m), 2953 (m), 1752 (s), 1660 (s).

-

⁵ Alexandrou, N. E.; Nicolaides, D.N. Tetrahedron Lett. **1966**, 7, 2497-2499.

⁶ Jones, L. W.; Hurd, C. D. J. Am. Chem. Soc. **1921**, 43, 2422-2448.

N-(2-Pyridinylcarbonyloxy)benzamide⁷

2-Picolinoyl chloride hydrochloride (1.0 g, 5.2 mmol) was dissolved in THF (20 mL) in a round bottomed flask. Et₃N (0.526 g, 5.2 mmol) was added to the suspension via syringe, and a white precipitate was observed. Then benzohydroxamic acid (0.693 g, 5 mmol) was dissolved in THF (20 mL) and slowly added, followed by additional Et₃N (0.526 g, 5.2 mmol). More white precipitate was observed. After stirring at room temperature under argon overnight, the solid was filtered and washed with EtOAc (10 mL). The filtrate was washed with water and then brine. After drying over MgSO₄, evaporation of the solvent gave a light yellow solid. Recrystallization from Et₂O/CH₂Cl₂ gave the product as an off-white solid in 52% yield (0.629 g). Mp 80-81°C. (lit. {155-166 °C }⁷) 1 H NMR (400 MHz, d_6 -DMSO) δ 8.82 (d, J = 4.8 Hz, 1 H), 8.22 (d, J = 8.0 Hz, 1 H), 8.09 (td, J = 8.0, 1.2 Hz, 1 H), 7.90 (d, J = 8.0 Hz, 2 H), 7.74-7.77 (m, 1 H), 7.64 (t, J = 6.8 Hz, 1 H), 7.56 (t, J = 7.6 Hz, 2 H), -0.27 (br, s, 1 H). 13 C NMR (100 MHz, d_6 -DMSO) δ 164.9, 163.3, 150.3, 145.4, 138.0, 132.5, 130.9, 128.8, 128.4, 127.5, 125.7. IR (neat, cm⁻¹): 3157 (m), 2930 (m), 1776 (s), 1664 (s), 1282 (s), 1239 (s), 1061 (s), 695 (s). HRMS (FAB) Calcd for C₁₃H₁₁O₃N₂ (M+H⁺): 243.0770. Found: 243.0771.

N-(penta-Fluorobenzoyloxy)benzamide

Benzohydroxamic acid (1.38 g, 10 mmol) and Et₃N (1.21 g, 12 mmol) were dissolved in CH₂Cl₂ (30 mL) in a round-bottom flask and cooled to -78 °C under protection of argon. Pentafluorobenzoyl chloride (2.53 g, 11 mmol) in CH₂Cl₂ (10 mL) was added to the mixture via syringe. The suspension was stirred for 2 h and slowly warmed to room temperature. The organic phase was washed with brine and dried over MgSO₄. Evaporation of the solvent gave the crude product. Recrystallization from CH₂Cl₂/hexanes gave a white solid (2.81 g, 85%) Mp 142-143 °C (ethyl ether). ¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 7.89 (d, J = 7.2 Hz, 2 H), 7.64 (t, J = 7.2

⁷ Misra, B. N.; Sharma, R. P.; Diksha. *Indian J. Chem. Sec. B.* **1986**, 25, 1182-1183.

Hz, 1 H), 7.53 (t, J = 8.0 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) 166.7, 158.2, 133.4, 130.1, 129.1, 127.8. IR (neat, cm⁻¹): 3244 (m), 1783 (s), 1654 (s), 1497 (s). HRMS (FAB) Calcd for $C_{14}H_7O_3NF_5$ (M+H⁺): 332.0340. Found. 332.0336.

O-Methylbenzohydroxamic acid⁸

O-Methylhydroxylamine hydrochloride (0.852 g, 10 mmol) and K₂CO₃ (2.792 g, 20 mmol) were dissolved in water (20 mL) and EtOAc (20 mL) in a round bottomed flask. The solution was cooled to 0 °C in an ice bath. Benzoyl chloride (1.406 g, 10 mmol) was then added via syringe. After stirring at room temperature for 2 h, the aqueous layer was removed. The organic layer was washed with water then brine. After drying over MgSO₄, evaporation of the solvent gave a sticky residue. Recrystallization from hexanes/Et₂O gave the product as a white solid in 70% yield (1.057 g). Mp 59.5-61.0 °C (lit. $\{61\text{-}62 \text{ °C (hexanes/Et₂O)}\}^8$). ¹H NMR (400 MHz, CDCl₃) $\{61\text{-}62\text{ °C (hexanes/Et₂O)}\}^8$ (b, $\{61\text{-}62\text{ °C (hexanes/Et₂O)}\}^8$). ¹H NMR (400 MHz, CDCl₃) $\{61\text{-}62\text{ °C (hexanes/Et₂O)}\}^8$). ¹H NMR (400 MHz, CDCl₃) $\{61\text{-}62\text{ °C (hexanes/Et₂O)}\}^8$). ¹H NMR (400 MHz, CDCl₃)

O-Phenylbenzohydroxamic acid⁹

O-Phenylhydroxylamine hydrochloride (0.750 g, 5 mmol) and Na₂CO₃ (1.06 g, 10 mmol) were dissolved in water (20 mL) and EtOAc (20 mL) in a round bottomed flask. Benzoyl chloride (0.703 g, 5 mmol) was added via syringe. After stirring at room temperature for 2 h, the aqueous layer was removed. The organic layer was washed with water then brine. After drying over MgSO₄, evaporation of the solvent gave a yellow solid. Recrystallization from hexanes/Et₂O gave the product as a white solid in 73% yield (0.777 g). Mp 135-136 °C (lit. {137-139 °C (EtOAc)}⁹). ¹H NMR (400 MHz, CDCl₃) δ 9.89 (br, s, 1 H), 7.78 (d, J = 7.6 Hz, 2 H), 7.50 (t, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 2 H), 7.26 (t, J = 7.6 Hz, 2 H), 7.00-7.07 (m, 3 H). IR (neat, cm⁻¹): 3173 (s), 2953 (m), 1656 (s),

⁸ Johnson, J. E.; Nalley, E. A.; Kunz, Y. K.; Springfield, J. R. J. Org. Chem. 1976, 41, 252-259.

⁹ Baughman, R. G.; Fountain, K. R.; Fountain, D. P.; Tappmeyer, A. M. J. Org. Chem. **1989**, *54*, 5819-5821.

1590 (s), 1513 (m), 1486 (s).

O-Acetyl-3-methoxybenzohydroxamic acid

Hydroxylamine hydrochloride (2.78 g, 40 mmol) and NaOH pellets (2 g, 50 mmol) were dissolved in water (20 mL) and THF (20 mL). *m*-Methoxybenzoyl chloride (1.723 g, 10 mmol) was then added via syringe. After stirring the mixture at room temperature overnight, 2 M HCl was added to acidify the solution to pH=1. EtOAc (10 mL) was added to the organic layer that was washed with brine, then dried over MgSO₄. Evaporation of the solvent gave 0.939 g of a light orange solid, which was then dissolved in THF (30 mL). After purging with argon, AcCl (0.453 g, 5.8 mmol) and Et₃N (0.587 g, 5.8 mmol) were added subsequently via syringe. The suspension was stirred at room temperature overnight. After filtration of the solid, EtOAc (20 mL) was added to the filtrate that was washed with water, then brine. Drying over MgSO₄ and evaporation of the solvent gave a white solid. Recrystallization from hexanes/EtOAc gave the product as white crystals in 40% yield (0.836 g). Mp 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.88 (br, s, 1 H), 7.29-7.35 (m, 3 H), 7.04-7.07 (m, 1 H), 3.80 (s, 3 H), 2.23 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 166.4, 160.0, 132.1, 130.0, 119.6, 119.3, 112.5, 55.6, 18.5. IR (neat, cm⁻¹): 3181 (m), 2937 (m), 1795 (s), 1660 (s), 1583 (s), 1177 (s). HRMS (FAB) Calcd for C₁₀H₁₁O₄NLi (M+Li[†]): 216.0848. Found: 216.0848.

O-Acetyl-4-nitrobenzohydroxamic acid¹⁰

O₂N OAc

Hydroxylamine hydrochloride (2.78 g, 40 mmol) and NaOH pellets (2 g, 50 mmol) were dissolved in water (20 mL) and THF (20 mL). *p*-Nitrobenzoyl chloride (1.874 g, 10 mmol) was dissolved in THF (30 mL) and added via syringe. After stirring the mixture at room temperature overnight, 2 M HCl was added to acidify the solution to pH=1. EtOAc (10 mL) was added to the organic layer that was washed with brine, then dried over MgSO₄.

¹⁰ (a) Dessolin, M.; Laloi-Diard, M.; Vilkas, M. *Bull. Soc. Chim. Fr.* **1970**, *7*, 2573-2580. (b) Exner, O.; Simon, W. *Collect. Czech. Chem. Commun.* **1965**, *30*, 4078-4094.

Evaporation of the solvent gave 1.290 g of an off-white solid, which was then dissolved in THF (30 mL). AcCl (0.569 g, 7.3 mmol) and Et₃N (0.739 g, 7.3 mmol) were added subsequently via syringe. The suspension was stirred at room temperature overnight. After filtration of the solid, EtOAc (10 mL) was added to the filtrate which was washed with water, then brine. Drying over MgSO₄ and evaporation of the solvent gave a white solid. Recrystallization from Et₂O/CH₂Cl₂ gave the product as needle-shape yellow crystals in 51% yield (1.14 g). Mp 181-183 °C. 1 H NMR (400 MHz, d6-acetone) δ 11.6 (br, s, 1 H), 8.38 (d, J = 8.0 Hz, 2 H), 8.13 (d, J = 8.0 Hz, 2 H), 2.24 (s, 3 H). 13 C NMR (100 MHz, d6-DMSO) δ 168.5, 162.7, 149.6, 136.6, 129.0, 123.9, 18.1. IR (neat, cm⁻¹): 3150 (s), 2964 (m), 1799 (s), 1671 (s), 1602 (m), 1571 (m). HRMS (FAB) Calcd for C₉H₈O₅N₂Li (M+Li⁺): 231.0593. Found: 231.0594.

O-Acetyl-(4-trifluoromethyl)benzohydroxamic acid

$$F_3C$$
 N
OAc

Hydroxylamine hydrochloride (2.78 g, 40 mmol) and NaOH pellets (2 g, 50 mmol) were dissolved in water (20 mL) and THF (20 mL). p-(Trifluoromethyl)benzoyl chloride (2.150 g, 10 mmol) was added via syringe. After stirring the mixture at room temperature overnight, 2 M HCl was added to acidify the solution to pH=1. EtOAc (10 mL) was added to the organic layer that was washed with brine, then dried over MgSO₄. Evaporation of the solvent gave 2.0 g of an off-white solid, which was then dissolved in THF (30 mL). AcCl (0.765 g, 9.8 mmol) and Et₃N (0.992 g, 9.8 mmol) were added subsequently via syringe. The suspension was stirred at room temperature overnight. After filtration of the solid, EtOAc (10 mL) was added to the filtrate that was washed with water, then brine. Drying over MgSO₄ and evaporation of the solvent gave a white solid. Recrystallization from EtOAc/CH₂Cl₂ gave the product as needle-shaped white crystals in 55% yield (1.359 g). Mp 140-141 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (br, s, 1 H), 7.93 (d, J = 11.2 Hz, 2 H), 7.73 (d, J = 11.2 Hz, 2 H), 2.31 (s, 3 H). ¹³C NMR (100 MHz, d6-DMSO) δ 168.5, 163.3, 134.9, 132.0 (q, J = 31.9 Hz), 128.4, 125.7 (q, J = 3.8 Hz), 123.8 (q, J = 270.8 Hz), 18.1. IR (neat, cm⁻¹): 3142 (m), 2961 (m), 1799 (s), 1710 (s), 1656 (m). HRMS (FAB) Calcd for C10H₈O₃NF₃Li (M+Li⁺): 254.0616. Found: 254.0616.

O-Acetyl 1-naphthohydroxamic acid

1-Naphthohydroxamic acid (0.936 g, 5 mmol) was dissolved in THF (60 mL) in a round bottomed flask. AcCl (0.408 g, 5.2 mmol) was added to the solution via syringe, followed by Et₃N (0.526 g, 5.2 mmol). The suspension was stirred at room temperature overnight. The precipitate was filtered and washed with EtOAc (20 mL). The filtrate was washed with water and then brine. After drying over MgSO₄, evaporation of the solvent gave a light yellow solid. Recrystallization from Et₂O/CH₂Cl₂ gave the product as an off-white solid in 68% yield (0.779 g). Mp 105-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (br, s, 1 H), 8.35 (d, J = 8.4 Hz, 1 H), 8.00 (d, J = 8.8 Hz, 1 H), 7.89 (d, J = 8.0 Hz, 1 H), 7.77 (dd, J = 6.8, 1.2 Hz, 1 H), 7.54-7.82 (m, 2 H), 7.49 (t, J = 7.6 Hz, 1 H), 2.34 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 167.5, 133.6, 131.9, 130.4, 129.3, 128.4, 127.6, 126.8, 126.4, 125.2, 124.6, 18.3. IR (neat, cm⁻¹): 3150 (s), 2953 (m), 1791 (s), 1660 (s), 1513 (m). HRMS (FAB) Calcd for C₁₃H₁₁O₃NLi (M+Li⁺): 236.0899. Found: 236.0910.

N-Acetoxy-2-thiophenecarboxamide

Hydroxylamine hydrochloride (2.78 g, 40 mmol) and NaOH pellets (2 g, 50 mmol) were dissolved in water (20 mL) and THF (20 mL). 2-Thiophenecarbonyl chloride (1.46 g, 10 mmol) was then added via syringe. After stirring the mixture at room temperature overnight, 2 M HCl was added to acidify the solution to pH=1. EtOAc (10 mL) was added to the organic layer that was washed with brine, then dried over MgSO₄. Evaporation of the solvent gave a yellow solid which was then dissolved in THF (30 mL). After purging with argon, AcCl (0.765 g, 9.8 mmol) and Et₃N (0.992 g, 9.8 mmol) were added subsequently via syringe. The suspension was stirred at room temperature overnight. After filtration of the solid, EtOAc (10 mL) was added to the filtrate that was washed with water, then brine. Drying over MgSO₄ and evaporation of the solvent gave a yellow solid. Recrystallization from hexanes/EtOAc gave the product as white crystals in 75% yield (1.39 g). Mp 93-94 °C (ethyl ether). ¹H NMR (400

MHz, CDCl₃) δ 9.37 (s, 1 H), 7.69 (m, 1 H), 7.61 (d, J = 5.6 Hz, 1 H), 7.15 (m, 1 H), 2.30 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) 169.4, 161.7, 133.7, 132.1, 130.7, 128.1, 18.5. IR (neat, cm⁻¹): 3102 (w), 1782 (s), 1643 (s). HRMS (FAB) Calcd for C₇H₈O₃NS (M+H⁺): 186.0219. Found: 186.0215.

O-Acetyl acetylhydroxamic acid¹¹

Acetyl hydroxamic acid (1.5 g, 20 mmol), CH₂Cl₂ (30 mL), and NaOH (2 M, 11 mL) were charged to a round bottomed flask. Ac₂O (2.2 g, 22 mmol) was added via syringe. After stirring at room temperature for 2 h, the CH₂Cl₂ layer was separated. The aqueous layer was extracted with CH₂Cl₂ (10 mL) and the CH₂Cl₂ layers were combined and washed with brine and dried over MgSO₄. Evaporation of the solvent gave the product as a white solid (1.7 g, 76%). Mp 85-86 °C (hexanes/EtOAc, lit. {88-90 °C (hexanes/ether)} ¹¹). ¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 1 H), 2.24 (s, 3 H), 2.07 (s, 3 H). IR (neat, cm⁻¹): 2957 (m), 1787 (s), 1668 (s)

O-Acetyl laurohydroxamic acid

Laurohydroxamic acid¹² (2.2 g, 10 mmol), CH₂Cl₂ (30 mL) and NaOH (2 M, 11 mL) were charged to a round bottomed flask. Ac₂O (1.1 g, 11 mmol) was added via syringe. After stirring at room temperature for 2 h, the CH₂Cl₂ layer was separated. The aqueous layer was extracted with CH₂Cl₂ (10 mL). The CH₂Cl₂ layers were combined and washed with brine and dried over MgSO₄. Evaporation of the solvent gave the product as a white solid (2.2 g, 85%). Mp 95-96 °C (hexanes/EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1 H), 2.24 (m, 5 H), 1.68 (m, 2 H), 1.28 (br, 16 H), 0.87 (t, J = 7.2 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 169.0, 33.0, 32.1, 29.8, 29.6, 29.53, 29.50, 29.3, 25.3, 22.8, 18.4, 14.3. IR (neat, cm⁻¹): 2916 (s), 2847 (s), 1790 (s), 1661 (s). HRMS(FAB) Calcd for C₁₄H₂₈O₃N (M+H⁺): 258.2063. Found: 258.2057.

¹¹ Narita, M.; Akiyama, M.; Okawara, M. Bull. Chem. Soc. Jpn. **1971**, 44, 437-441.

Laurohydroxamic acid was prepared by the procedure: Reddy, A. S.; Kumar, M. S.; Reddy, G. R. *Tetrahedron Lett.* **2000**, *41*, 6285-6288.

N-Acetoxy-2-phenylacetamide¹³

Hydroxylamine hydrochloride (2.78 g, 40 mmol) and NaOH pellets (2 g, 50 mmol) were dissolved in water (20 mL) and EtOAc (20 mL). Phenylacetyl chloride (1.578 g, 10 mmol) was then added via syringe. After stirring the mixture at room temperature overnight, 2 M HCl was added to acidify the solution to pH=1. The organic layer was separated, washed with brine then dried over MgSO₄. Evaporation of the solvent gave 0.830 g of an off-white solid, which was then dissolved in THF (30 mL). After purging with argon, AcCl (0.453 g, 5.8 mmol) and Et₃N (0.587 g, 5.8 mmol) were added subsequently via syringe. The suspension was stirred at room temperature overnight. After filtration of the solid, EtOAc (10 mL) was added to the filtrate which was washed with water, then brine. Drying over MgSO₄ and evaporation of the solvent gave a white solid. Recrystallization from hexanes/Et₂O gave the product as needle-shape colorless crystals in 52% yield (1.0 g). Mp 139-140 °C (lit. {141-142 °C}¹³). H NMR (400 MHz, CDCl₃) δ 8.86 (br, s, 1 H), 7.30-7.38 (m, 5 H), 3.65 (s, 2 H), 2.18 (s, 3 H). IR (neat, cm⁻¹): 3142 (s), 2937 (m), 1791 (s), 1702 (s), 1652 (s).

General procedure for Cu(I) mediated reaction of *O*-substituted aryl/alkylhydroxamic acid and arylboronic acid. *O*-Substituted hydroxamic acid (0.2 mmol), boronic acid (0.24 mmol) and CuTC (0.2 mmol) were added to a Schlenk tube. After flushing with argon, THF (5 mL) was added via syringe. The reaction mixture was stirred under the protection of argon at 60 °C for 16 h. Ethyl ether (10 mL) was added to the mixture. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The residue was then subjected to preparative plate silica gel chromatography using hexanes/EtOAc as eluent.

N-Phenylbenzamide¹⁴

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a light yellow solid (30 mg, 74%). Mp

¹³ Cherest, M.; Lusinchi, X. Tetrahedron **1986**, 42, 3825-3840.

¹⁴ Huang, H. H.; Tan, B. G. J. Chem. Soc. Perkin Trans. 2 1983, 233-235.

161-161.5 °C (hexanes/EtOAc, lit. $\{162-163 \text{ °C (ethanol)}\}^{14}$). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (br, s, 1 H), 7.86 (d, J = 7.6 Hz, 2 H), 7.64 (d, J = 7.6 Hz, 2 H), 7.34-7.56 (m, 5 H), 7.15 (t, J = 7.6 Hz, 1 H). IR (neat, cm⁻¹): 3343 (s), 3053 (m), 2918 (m), 1656 (s), 1598 (s), 1525 (s), 1440 (s).

*N-p-*Tolylbenzamide¹⁵

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a light yellow solid (32 mg, 77%). Mp 157-158 °C (hexanes/EtOAc, {lit. 158 °C} 15). 1 H NMR (400 MHz, CDCl₃) δ 7.99 (br, s, 1 H), 7.84 (d, J = 8.0 Hz, 2 H), 7.42-7.53 (m, 5 H), 7.14 (d, J = 8.4 Hz, 2 H), 2.34 (s, 3 H). IR (neat, cm⁻¹): 3312 (s), 3053 (m), 2918 (m), 1648 (s), 1579 (m), 1513 (m).

N-(1,3-Benzodioxol-5-vl)benzamide¹⁶

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a yellow solid (30 mg, 63%). Mp 134-135 °C (hexanes/EtOAc). 1 H NMR (400 MHz, CDCl₃) δ 8.13 (br, s, 1 H), 7.81 (d, J = 8.4 Hz, 2 H), 7.38-7.52 (m, 3 H), 7.30 (d, J = 0.8 Hz, 1 H), 6.90 (dd, J = 8.4, 2.0 Hz, 1 H), 6.72 (d, J = 8.4 Hz, 1 H), 5.93 (s, 2 H). IR (neat, cm⁻¹): 3308 (s), 2891 (m), 1644 (s), 1540 (m), 1490 (m).

N-(4-Phenoxyphenyl)benzamide¹⁷

O N OPh

¹⁵ Haridasan, V. K.; Ajayaghosh, A.; Pillai, V. N. Rajasekharan J. Org. Chem. 1987, 52, 2662-2665.

¹⁶ (a) Commercially available from Exploratory Library. (b) Monteil, A.; Simond, J.; Combourieu, M. Eur. Pat. Appl. (1985), EP 84-401919 19840926.

¹⁷ (a) Konieczny, J. M.; Wunder, S. L. *Macromolecules* **1996**, 29, 7613-7615. (b) Ruane, P. H.; Ahmed, A. R.; McClelland, R. A. *J. Chem. Soc. Perkin Trans.* 2 **2002**, 312-317.

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (40 mg, 68%). Mp 159-160 °C (diethyl ether). 1 H NMR (400 MHz, CDCl₃) δ 7.93 (br, s, 1 H), 7.86 (d, J = 7.6 Hz, 2 H), 7.45-7.61 (m, 5 H), 7.31-7.36 (m, 2 H), 6.99-7.12 (m, 5 H). IR (neat, cm⁻¹): 3347 (m), 3057 (m), 1652 (s), 1606 (m), 1525 (m), 1505 (s), 1486 (s).

3-Methoxy-N-p-tolylbenzamide¹⁸

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (28 mg, 58%). Mp 129-130 °C (hexanes/EtOAc, lit. $\{132 \text{ °C (ethanol)}\}^{18}$). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (br, s, 1 H), 7.51 (d, J = 8.4 Hz, 2 H), 7.31-7.42 (m, 3 H), 7.14 (d, J = 8.4 Hz, 2 H), 7.05 (dq, J = 7.6 Hz, 1.4, 1 H), 3.82 (s, 3 H), 2.33 (s, 3 H). IR (neat, cm⁻¹): 3296 (m), 2922 (m), 1648 (s), 1594 (s), 1517 (s).

N-(4-Methylphenyl)-4-(trifluoromethyl)benzamide¹⁹

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (46 mg, 81%). Mp 236-238 °C (hexanes/EtOAc). 1 H NMR (400 MHz, d6-acetone) δ 9.66 (br, s, 1 H), 8.18 (d, J = 8.4 Hz, 2 H), 7.86 (d, J = 8.4 Hz, 2 H), 7.72 (dd, J = 8.0, 1.6 Hz, 2 H), 7.18 (d, J = 8.4 Hz, 2 H), 2.31 (s, 3 H). IR (neat, cm⁻¹): 3424 (m), 3061 (m), 3007 (m), 1710 (s), 1420 (m), 1363 (s).

2-Phenyl-N-p-tolyl-acetamide²⁰

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a light yellow solid (34 mg, 76%). Mp

²⁰ House, H. O.; Berkowitz, W. F. J. Org. Chem. **1963**, 28, 307-311.

¹⁸ Grammaticakis, P. Bull. Soc. Chim. Fr. **1964**, 5, 924-935.

¹⁹ Commercially available from Exploratory Library.

Commercially available from Exploratory Library

131-132.5 °C (hexanes/EtOAc, lit. $\{132-133.8 \text{ °C (hexanes/EtOAc)}\}^{20}$). ¹H NMR (400 MHz, CDCl₃) δ 7.30-7.40 (m, 8 H), 7.07 (d, J = 8.4 Hz, 2 H), 3.70 (s, 2 H), 2.29 (s, 3 H). IR (neat, cm⁻¹): 3300 (m), 3034 (m), 1656 (s), 1606 (s), 1536 (s), 1517 (s).

Naphthalene-1-carboxylic acid p-tolyl-amide²¹

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (34 mg, 65%). Mp 190-191 °C (hexanes/EtOAc, lit. $\{191.9-192.9 \text{ °C}\}^{21}$). ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.36 (m, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.88-7.90 (m, 1 H), 7.17 (d, J = 6.4 Hz, 2 H), 7.53-7.58 (m, 4 H), 7.45 (t, J = 7.6 Hz, 1 H), 7.19 (d, J = 8.0 Hz, 2 H), 2.36 (s, 3 H). IR (neat, cm⁻¹): 3235 (m), 2922 (m), 1648 (s), 1598 (m), 1517 (s).

General procedure for Cu(I) mediated reaction of *O*-acetyl aryl/heteroaryl/alkylhydroxamic acid with organostannane. *O*-Substituted hydroxamic acid (0.2 mmol), organostannane (0.24 mmol) and CuDPP (0.4 mmol) were added to a Schlenk tube. After flushing with argon, DMF (5 mL) was added via syringe. The reaction mixture was stirred under the protection of argon at 60 °C for 12 h. Ethyl ether (10 mL) was added to the mixture. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The residue was then subjected to preparative plate silica chromatography using hexanes/EtOAc as eluent.

*N-p-*Tolvlbenzamide¹⁵

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a light yellow solid (33 mg, 80%). Mp 157-158 °C (hexanes/EtOAc, {lit. 158 °C} 15). 1 H NMR (400 MHz, CDCl₃) δ 7.99 (br, s, 1 H), 7.84 (d, J = 8.0 Hz, 2 H), 7.42-7.53 (m, 5 H), 7.14 (d, J = 8.4 Hz, 2 H), 2.34 (s, 3 H). IR (neat, cm $^{-1}$): 3312 (s), 3053 (m), 2918 (m), 1648 (s), 1579 (m), 1513 (m).

²¹ Jart, A. Acta Polytech. Scand., Chem. Met. Ser. 1965, 44, 1.

*N-p-*Methoxyphenyl-benzamide²²

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (34 mg, 76%). Mp 156-157 °C (hexanes/EtOAc, lit. $\{156-157^{\circ}C\}^{22}$). H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 2 H), 7.79 (s, 1 H), 7.55-7.47 (m, 5 H), 6.92 (d, J = 7.2 Hz, 2 H), 3.82 (s, 3 H). IR (neat, cm⁻¹): 3331 (m), 3053 (m), 1644 (s), 1602 (m), 1517 (s).

*N-p-*Chlorophenyl-benzamide²³

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (26 mg, 56%). Mp 188-190 °C (hexanes/EtOAc, lit. $\{190\text{-}191\text{°C}\}^{23}$) ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 6.8 Hz, 2 H), 7.80 (s, 1 H), 7.62-7.49 (m, 5 H), 7.36 (d, J = 8.8 Hz, 2 H). IR (neat, cm⁻¹): 3335 (m), 1648 (s), 1594 (m), 1521 (s).

N-4-Dibenzofuranylbenzamide

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (42 mg, 73%). Mp 195-196 °C (hexanes/EtOAc). 1 H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 7.6 Hz, 1 H), 8.48 (s, 1 H), 8.05-7.97 (m, 3 H), 7.74 (dd, J = 8.0, 1.2 Hz, 1 H), 7.65-7.56 (m, 4 H), 7.52-7.48 (m, 1 H), 7.42-7.28 (m, 2 H). 13 C NMR (100 MHz, CDCl₃) δ 165.8, 155.9, 146.0, 134.9, 132.3, 129.1, 127.5, 127.4, 124.7, 124.5, 124.0, 123.8, 123.4, 121.2, 118.2, 116.2, 111.8. IR (neat, cm⁻¹): 3239 (m), 1648 (s), 1525 (s). HRMS (FAB) Calcd for C₁₉H₁₄O₂N (M+H⁺): 288.1019. Found: 288.1015.

²³ Singh, H; Aggarwal, S. K.; Malhotra, N. Synthesis **1983**, 10, 791-793.

²² Katritzky, A. R. Cai, C.; Singh, S. K. J. Org. Chem. 2006, 71, 3375-3380.

N-((**Z**)-Prop-1-enyl)benzamide²⁴

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded light yellow oil (22 mg, 66%). 1 H NMR (400 MHz, CDCl₃) δ 7.83-7.81 (m, 2 H), 7.58-7.46 (m, 4 H), 6.99-6.93 (m, 1 H), 4.98-4.94 (m, 1H), 1.73 (dd, J = 7.2, 2.0 Hz, 3 H). IR (neat, cm⁻¹): 2926 (s), 1656 (s), 1606 (m), 1529 (s).

N-(Furan-2-yl)benzamide²⁵

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (27 mg, 73%). Mp 116-118 °C (hexanes/EtOAc, lit. $\{121-122^{\circ}C\}^{25}$). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1 H), 7.88 (d, J = 7.6 Hz, 2 H), 7.59-7.48 (m, 3 H), 7.12 (dd, J = 2.0, 1.2 Hz, 1 H), 6.50 (d, J = 3.2 Hz, 1 H), 6.49 (dd, J = 3.2, 2.0 Hz, 1 H). IR (neat, cm⁻¹): 3065 (m), 1660 (s), 1606 (m), 1540 (s).

N-(Pyrazin-2-yl)benzamide²⁶

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (17 mg, 42%). Mp 169-170 °C (hexanes/EtOAc, lit. $\{170^{\circ}\text{C}\}^{26}$) ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1 H), 8.51 (s, 1H), 8.41 (d, J = 2.4 Hz, 1 H), 8.29 (s, 1H), 7.96-7.94 (m, 2 H), 7.62-7.52 (m, 3 H). IR (neat, cm⁻¹): 3242 (m), 3065 (m), 1675 (s), 1583 (m), 1532 (s).

N-(4-Methylphenyl)-4-nitrobenzamide²⁷

²⁴ Liskamp, R. M. J.; Blom, H. J.; Nivard, R. J. F.; Ottenheijm, H. C. J. J. Org. Chem. 1983, 48, 2733-2736.

²⁵ Padwa, A.; Crawford, K. R.; Rashatasakhon, P.; Rose, M. J. Org. Chem. 2003, 68, 2609-2617.

²⁶ Barlin, G. B.; Brown, D. J.; Kadunc, Z.; Petric, A.; Stanovnik, B.; Tisler, M. Aust. J. Chem, **1983**, 36, 1215-1220.

$$O_2N$$

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (37 mg, 74%). Mp 198-199 °C (hexanes/EtOAc, lit. $\{201\text{-}203\text{°C}\}^{27}$) ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 9.2 Hz, 2 H), 8.05 (d, J = 8.4 Hz, 2 H), 7.84 (s, 1 H), 7.53 (d, J = 8.0 Hz, 2 H), 7.21 (d, J = 8.0 Hz, 2 H), 2.36 (s, 3 H). IR (neat, cm⁻¹): 3312 (m), 1644 (s), 1598 (m), 1525 (s).

3-Methoxy-N-p-tolylbenzamide²⁸

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (34 mg 71%). Mp 125-126 °C (hexanes/EtOAc, lit. $\{132\,^{\circ}\text{C (ethanol)}\}^{28}$). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.43-7.37 (m, 3 H), 7.19 (d, J = 8.4 Hz, 2 H), 7.09 (m, 1 H), 3.87 (s, 3 H), 2.35 (s, 3 H). IR (neat, cm⁻¹): 3296 (m), 3034 (m), 1648 (s), 1594 (s), 1517 (s).

Naphthalene-1-carboxylic acid p-tolyl-amide²⁹

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (43 mg 83%). Mp. 192-193 °C (hexanes/EtOAc, lit. $\{191.9-192.9 \text{ °C}\}^{29}$). ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 7.6 Hz, 1 H), 7.98 (d, J = 8.0 Hz, 1 H), 7.92-7.90 (m, 1 H), 7.76 (d, J = 6.8 Hz, 1 H), 7.64-7.50 (m, 6 H), 7.23 (d, J = 8.4 Hz, 2 H), 2.37 (s, 3 H). IR (neat, cm⁻¹): 3235 (m), 3046 (m), 1652 (s), 1598 (s), 1517 (s).

N-(4-Methoxyphenyl)thiophene-2-carboxamide³⁰

²⁷ Han, K-J; Tae, B. S.; Kim, M. Org. Prep. Proced. Int. **2005**, *37*, 198-203.

²⁸ Grammaticakis, P. Bull. Soc. Chim. Fr. **1964**, 5, 924-935.

²⁹ Jart, A. Acta Polytech, Scand., Chem. Met. Ser. 1965, 44, 1.

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (42 mg, 90%). Mp 139-140 °C (hexanes/EtOAc, lit. $\{137-140 \text{ °C (hexanes/EtOAc)}\}^{30}$). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1 H), 7.62 (d, J=3.6 Hz, 1 H), 7.54-7.50 (m, 3 H), 7.12 -7.10 (m, 1 H), 6.91-6.88 (m, 2 H), 3.81 (s, 3 H). IR (neat, cm⁻¹): 3281 (m), 3003 (m), 1633 (s), 1602 (m), 1513 (s).

N-(Thiophen-2-yl)thiophene-2-carboxamide³¹

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (25 mg, 60%). Mp 205-206 °C ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1 H), 7.68 (dd, J = 3.6, 1.2 Hz, 1 H), 7.58 (dd, J = 5.2, 1.2 Hz, 1 H), 7.15 (dd, J = 5.2, 3.6 Hz, 1 H), 6.95 (dd, J = 5.6, 1.2 Hz, 1 H), 6.91(dd, J = 5.6, 3.6 Hz, 1 H), 6.80 (dd, J = 3,6, 1.2 Hz, 1 H). IR (neat, cm⁻¹): 3227 (m), 1617 (s), 1563 (s) 1513 (s).

2-Phenyl-N-p-tolylacetamide¹⁷

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (33 mg, 74%). Mp 130-131 °C (hexanes/EtOAc, lit. $\{132\text{-}133.8 \text{ °C (hexanes/EtOAc)}\}^{17}$). H NMR (400 MHz, CDCl₃) δ 7.41-7.28 (m, 7 H), 7.09 (d, J = 8.4 Hz, 2 H), 7.04 (s, 1 H), 3.73 (s, 2 H), 2.29 (s, 3 H). IR (neat, cm⁻¹): 3300 (m), 1656 (s), 1606 (s), 1536 (s).

N-(4-Iodophenyl)-2-phenylacetamide³²

³⁰ Lee, C. K; Yu, J. S; Ji, Y. R. J. Heterocycl. Chem, **2002**, 39,1219-1227.

³¹ Brovelli, F; del Valle, M. A.; Diaz, F. R.; Bernede, J. C. Bol. Soc. Chil. Quim, **2001**, 46, 319-337.

³² Chattaway, F. D.; Constable, A. J. Chem. Soc., Trans., **1914**, 105, 124-131.

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (40 mg, 60%). Mp 195-196 °C (hexanes/EtOAc, lit. {200 °C }³²). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.57 (m, 2 H), 7.44-7.32 (m, 5 H), 7.21-7.19 (m, 2 H), 7.02 (s, 1 H), 3.74 (s, 2 H). IR (neat, cm⁻¹): 3273 (m), 3026 (m), 1656 (s), 1583 (m), 1525 (s).

N-(2-Methylprop-1-enyl)-2-phenylacetamide³³

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (24 mg, 64%). Mp 98-99 °C (hexanes/EtOAc, lit. {102 °C (hexanes/EtOAc)}³³). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.28 (m, 5 H), 6.64 (s, 1 H), 6.51-6.48 (m, 1 H), 3.65 (s, 2 H), 1.65 (s, 3 H), 1.35 (s, 3 H). IR (neat, cm⁻¹): 3300 (m), 2930 (m), 1660 (s), 1637 (s), 1529 (s).

*N-p-*Tolylacetamide³⁴

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (25 mg, 85%).. Mp 146-147 °C (hexanes/EtOAc, lit. {146-148 °C (hexanes/EtOAc)³⁴} ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.4 Hz, 2 H), 7.13 (d, J = 8.4 Hz, 2 H), 2.31 (s, 3 H), 2.16 (s, 3 H). IR (neat, cm⁻¹): 3289 (m), 2922 (m), 1660 (s), 1602 (s), 1532 (s).

N-p-Tolyldodecanamide³⁵

N H

Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (38 mg, 66%).. Mp 83-84 °C (hexanes/EtOAc, lit. {82-83 °C (hexanes/EtOAc)³⁵} 1 H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 2 H), 7.18 (s, 1 H), 7.13 (d, J = 8.0 Hz, 2 H), 2.35-2.31 (m, 5 H), 1.73-1.70 (m, 2 H), 1.32-1.26 (br, 16 H), 0.90 (t, J = 6.8 Hz,

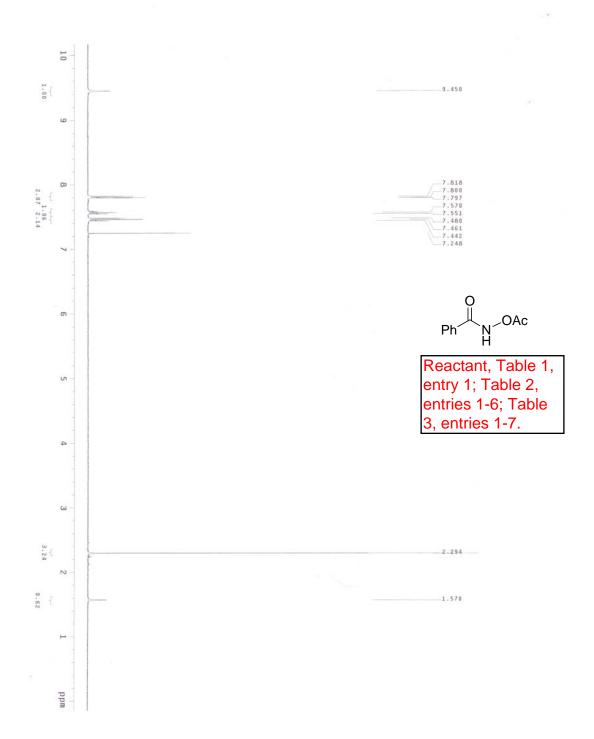
³⁴ Lobo, A. M.; Marques, M. M. Prabhakar, S. Rzepa, H. S. *J.Org. Chem.* **1987**, *52*, 2925-2927.

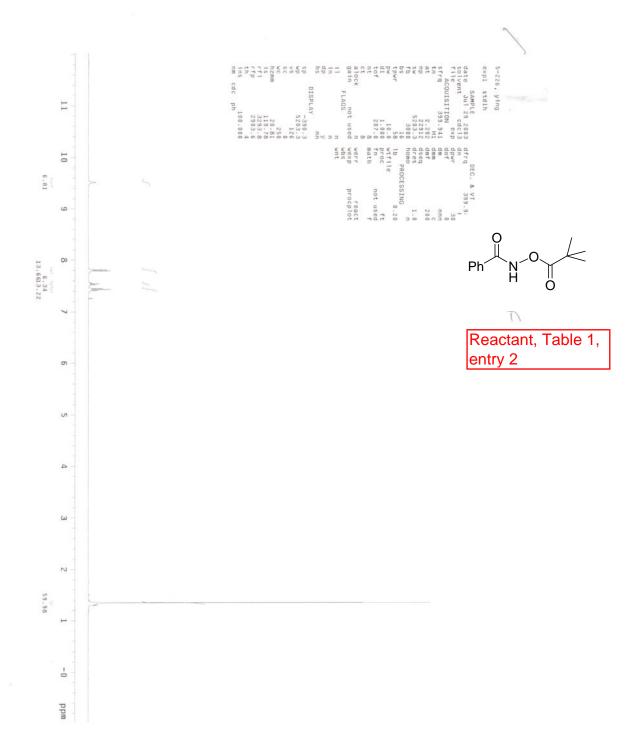
•

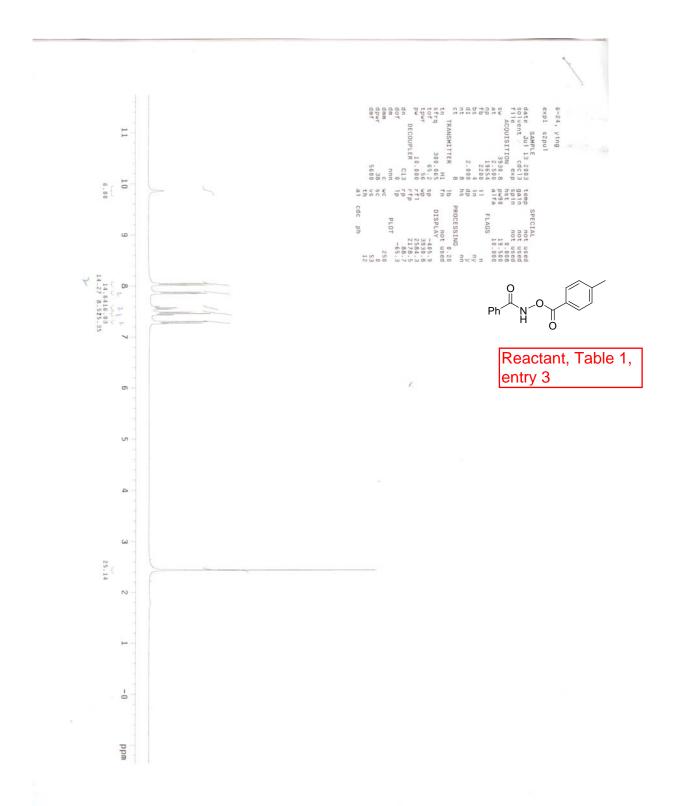
³³ Zehavi, U.; Ben-Ishai, D. J. Org. Chem, **1961**, 26, 1097-1101.

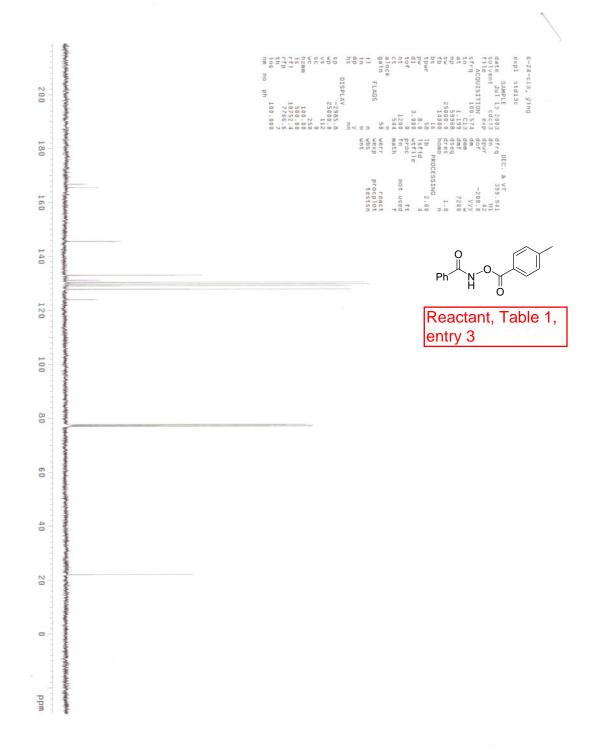
³⁵ Robertson, P. W. J. Chem. Soc., Trans., **1919**, 115, 1210-1223.

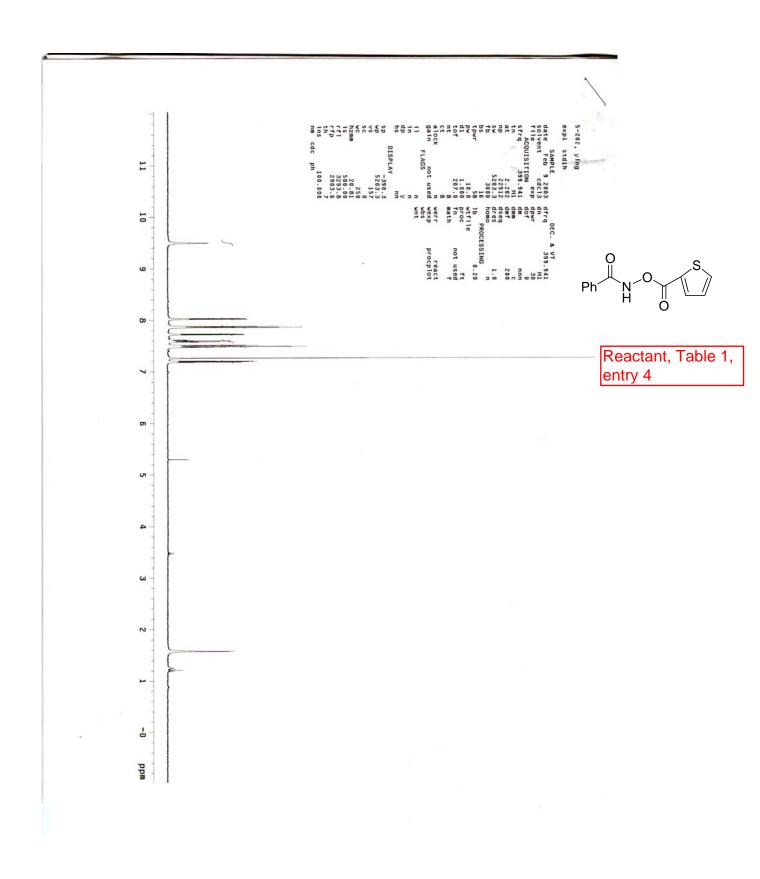
3 H). IR (neat, cm⁻¹): 3312 (m), 2922 (s), 1660 (s), 1529 (s).


N-(E)- β -Styryldodecanamide


Purification by preparative TLC (hexanes/EtOAc 2:1) afforded a white solid (31 mg, 52%). Mp 103-104 °C (hexanes/EtOAc) 1 H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 14.4, 10.8 Hz, 1 H), 7.38-7.26 (m, 5 H), 7.19-7.15 (m, 1 H), 2.35-2.31 (m, 5 H), 6.11 (d, J = 14.4 Hz, 1H), 2.31 (t, J = 7.6 Hz, 2H), 1.71-1.66 (m, 2 H), 1.32-1.26 (br, 16 H), 0.90 (t, J = 6.8 Hz, 3 H). 13 C NMR (100 MHz, CDCl₃) δ 170.8, 136.2, 128.8, 126.8, 125.7, 122.8, 112.5, 37.0, 32.1, 29.8, 29.6, 29.5, 29.4, 25.7, 22.8, 14.3. IR (neat, cm⁻¹): 3305 (m), 2916 (s), 2849 (m), 1664 (m), 1639 (s), 1522 (m). HRMS (FAB) Calcd for $C_{20}H_{32}ON$ (M+H⁺): 302.2478. Found: 302.2474.


N-(acetyloxy)-N-(4-methylphenyl)-benzamide


O-Acetyl benzohydroxamic acid (36 mg, 0.2 mmol), *p*-tolyl boronic acid (33 mg, 0.24 mmol) and Cu(OAc)₂ (36 mg, 0.2 mmol) were added to a flask. DMF (5 mL) was added via syringe. The reaction mixture was stirred under air at 60 °C for 12 h. Ethyl ether (10 mL) was added to the mixture. The organic layer was washed with brine, dried over MgSO₄ and evaporated. The residue was then subjected to preparative plate silica gel chromatography using hexanes/EtOAc as eluent. The product was obtained as a yellow oil (23 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.2 Hz, 2 H), 7.38 (t, J = 7.2 Hz, 1 H), 7.29 (m, 2 H), 7.21 (d, J = 8.8 Hz, 2 H), 7.11 (d, J = 8.0 Hz, 2 H), 2.32 (s, 3 H), 2.19 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 167.0, 139.1, 138.2, 133.4, 131.1, 130.0, 129.0, 128.2, 127.5, 21.3, 18.6. IR (neat, cm⁻¹): 3069 (m), 2964 (m), 1795 (s), 1675 (s), 1509 (m). HRMS (FAB) Calcd for C₁₆H₁₆O₃N (M+H⁺): 270.1124. Found: 270.1120.


Under the same reaction conditions using CuTC in place of $Cu(OAc)_2$ the product of the reaction was N-p-tolylbenzamide (56%). Characterization data is provided above.

