Supporting Information for
Semi-synthesis of antiviral alkyl long-chain ether glycosides of sulfated oligosaccharides via dibutyldistannylene acetal intermediates

Alan G. Gonçalves,a,b Miguel D. Noseda,b M. E. R. Duarte,b and T. Bruce Grindley*a

aDepartment of Chemistry, Dalhousie University, Halifax, NS, Canada, B3H 4J3.
bBiochemistry and Molecular Biology Department, PO Box 19046, Federal University of Paraná, Curitiba, Brazil.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General methods</td>
<td>03</td>
</tr>
<tr>
<td>(\beta)-D-Galactopyranosyl-(1(\rightarrow)4)-3,6-anhydro-(\alpha)-L-galactopyranosyl-(1(\rightarrow)3)-(\beta)-D-galactopyranosyl-(1(\rightarrow)4)-3,6-anhydro-(\alpha)-L-galactitol (2)</td>
<td>04</td>
</tr>
<tr>
<td>125.7 MHz 13C NMR spectrum</td>
<td>04</td>
</tr>
<tr>
<td>500.1 MHz 1H NMR spectrum</td>
<td>04</td>
</tr>
<tr>
<td>(\beta)-D-Galactopyranosyl-(1(\rightarrow)4)-3,6-anhydro-1-O-tetradecyl-L-galactitol (3)</td>
<td>05</td>
</tr>
<tr>
<td>125.7 MHz 13C NMR spectrum</td>
<td>05</td>
</tr>
<tr>
<td>500.1 MHz 1H NMR spectrum</td>
<td>05</td>
</tr>
<tr>
<td>3-O-Tetradecyl-(\beta)-D-galactopyranosyl-(1(\rightarrow)4)-3,6-anhydro-1-O-tetradecyl-L-galactitol (4)</td>
<td>06</td>
</tr>
<tr>
<td>125.7 MHz 13C NMR spectrum</td>
<td>06</td>
</tr>
<tr>
<td>500.1 MHz 1H NMR spectrum</td>
<td>06</td>
</tr>
<tr>
<td>3-O-Tetradecyl-6-O-trityl-(\beta)-D-galactopyranosyl-(1(\rightarrow)4)-3,6-anhydro-1-O-trityl-L-galactitol (6)</td>
<td>07</td>
</tr>
<tr>
<td>125.7 MHz 13C NMR spectrum</td>
<td>07</td>
</tr>
<tr>
<td>500.1 MHz 1H NMR spectrum</td>
<td>07</td>
</tr>
</tbody>
</table>
3-O-Tetradecyl-β-D-galactopyranosyl-(1→4)-3,6-anhydro-L-galactitol (7)

125.7 MHz 13C NMR spectrum
500.1 MHz 1H NMR spectrum

β-D-Galactopyranosyl-(1→4)-3,6-anhydro-α-L-galactopyranosyl-(1→3)-β-D-galactopyranosyl-(1→4)-3,6-anhydro-1-O-tetradecyl-L-galactitol (8)

125.7 MHz 13C NMR spectrum
500.1 MHz 1H NMR spectrum

Sodium 3-O-Sulfonato-β-D-galactopyranosyl-(1→4)-3,6-anhydro-1-O-tetradecyl-L-galactitol (9)

125.7 MHz 13C NMR spectrum
500.1 MHz 1H NMR spectrum

The mixture of disulfates also produced on sulfonation of compound 3 (Scheme 5)

125.7 MHz 13C NMR spectrum
500.1 MHz 1H NMR spectrum

Spectra of the mixture of isomers resulting from sulfation of 4

125.7 MHz 13C NMR spectrum in DMSO-d_6
500.1 MHz 1H NMR spectrum in DMSO-d_6

Sodium 4-O-Sulfonato-β-D-galactopyranosyl-(1→4)-3,6-anhydro-1-O-tetradecyl-D-galactitol (11).

125.7 MHz 13C NMR spectrum
500.1 MHz 1H NMR spectrum
General Methods. Thin-layer chromatography (TLC) was performed on silica gel coated aluminium sheets 60 F254 using solvent mixtures measured on a v/v basis. After chromatography, products were visualized by spraying the plate with a solution of 0.5% orcinol in ethanol/conc H$_2$SO$_4$ (20/1) and heating on a hot plate until coloration was observed. Flash column chromatography was carried out using TLC grade silica gel 60 with fractions being analyzed by TLC. DEAE-Sephadex A-25 and BioGel P-2 columns eluents were analyzed for carbohydrates by phenol-sulfuric method.71 1H and 13C NMR spectra were recorded in 5 mm NMR tubes on an NMR spectrometer operating at 500.13 and 125.77 MHz, respectively. Chemical shifts were reported relative to an internal acetone standard at 30.20 ppm for 13C and 2.224 ppm for 1H nuclei, for samples recorded in D$_2$O. For samples recorded in acetone-d_6, chemical shifts were referenced to the central line of the deuterated solvent at 29.92 ppm for 13C and 2.050 ppm for 1H. For samples recorded in CDCl$_3$, spectra were calibrated through the central line of the deuterated solvent for 13C (77.16 ppm) and referenced to the internal TMS standard at 0.00 ppm for 1H. For samples in CD$_3$OD or in solvent mixtures (CDCl$_3$:CD$_3$OD 2:1 or CDCl$_3$:CD$_3$OD:D$_2$O 2:2:1), central line of CD$_3$OD was calibrated at 49.15 ppm (13C) and 3.310 ppm (1H). All assignments were performed with the aid of COSY, HSQC and/or HMBC experiments. Assignments and magnitudes of coupling constants were obtained for 1H NMR spectra by first-order analyses. The appearance of signals is indicated using the abbreviations b, s, d, t, q, p, and m for broad, singlet, doublet, triplet, quartet, pentet, and multiplet, respectively. High resolution electrospray mass spectra (HR ESI MS) were recorded with samples dissolved in methanol using trilysine KKK or rifampicin or the Tuning Mix from Agilent as reference. All solvents were dried and purified by standards methods and distilled before use.
Compound 2

Compound 2: 13C (methanol d4)

Compound 2: 1H methanol d4
Compound 3: 13C chloroform dimethanol d$_4$ (2:1)

Compound 3: 1H methanol d$_4$: chloroform d (2:1)
Compound 4

Compound 4: 13C chloroform d

Compound 4: H chloroform d
Compound 6

Compound 6: 13C acetone d6

Compound 6: 1H acetone d6
Compound 7

Compound 7: 13C chloroform d: methanol d4 (2:1)

Compound 7: 1H chloroform d: methanol d4 (2:1)
Compound 8

\[
\begin{align*}
\text{OH} & \quad \text{O} \\
\text{OH} & \quad \text{O(CH}_2\text{)}_{13}\text{CH}_3 \\
\text{OH} & \quad \text{O} \\
\end{align*}
\]
The unseparable mixture of disulfates:
Spectra of the mixture of isomers resulting from sulfation of 4:
Compound 11