Iron-Catalyzed Highly Regio- and Stereoselective Conjugate Addition of 2,3-Allenoates with Grignard Reagents

Zhan Lu, a Guobi Chai, a and Shengming Ma a,b,*

a Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China

b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China

Fax: (+86) 21-64167510; E-mail: masm@mail.sioc.ac.cn

Supporting Information

Table S1. Effects of the Amount of MeMgCl on Iron-Catalyzed Conjugate Addition of 2,3-Allenoate 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>X (equiv)</th>
<th>Yield of Z-2a (%) a</th>
<th>Z/E a</th>
<th>Yield of 3a (%) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>81</td>
<td>>99/1</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>80</td>
<td>98/2</td>
<td>0.9</td>
</tr>
</tbody>
</table>

a Determined by NMR

Materials. Toluene and THF were distilled from Na/benzophenone. 2,3-Allenoates were prepared according to the known procedure.1 Methyl magnesium chloride (3.0 M solution
in THF) used in this study were purchased from Aldrich. Phenyl magnesium chloride (1.9 M solution in THF) and vinyl magnesium chloride (1.7 M solution in THF) used in this study were purchased from Acros Organics. α-Hexyl magnesium chloride (1.5 M solution in THF), n-butyl magnesium chloride (1.5 M solution in THF), and s-butyl magnesium bromide (1.5 M solution in THF) used in this study were prepared from the reaction of magnesium turnings (17 mmol) with α-hexyl chloride, n-butyl chloride or s-butyl bromide (15 mmol) in THF (10 mL) according to the known procedure. The other commercially available chemicals were purchased and used without additional purification unless noted otherwise.

General Procedure for Fe(acac)$_3$-Catalyzed Conjugate Addition of 2,3-Allenoates with Grignard Reagents:

To a dry Schlenk tube, Fe(acac)$_3$ (0.5~5 mol%, 0.002~0.02 mmol), 1 (0.4 mmol), and toluene (5 mL) were added sequentially under a nitrogen atmosphere at room temperature. A solution of requisite Grignard reagent in THF (3 equiv, 1.2 mmol) was then added by a syringe to the reaction mixture within 3~5 min at -78 °C. The reaction was monitored by TLC. After 1~5 h, the reaction mixture was quenched slowly with saturated NH$_4$Cl (1 mL) at -78 °C, followed by warming up to rt naturally and the addition of water (5 mL) at this temperature. After extraction with diethyl ether (3 x 30 mL), the organic layer was washed subsequently with diluted HCl (1%, aq.), a saturated aqueous solution of NaHCO$_3$, brine, and dried over anhydrous Na$_2$SO$_4$. Evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1 or petroleum ether/dichloromethane = 10/1) afforded the desired product.
(1) Ethyl 4-phenyl-3-methyl-2-propyl-3(Z)-butenoate (Iz-9-144)

\[
\begin{align*}
\text{Ph} & \quad \text{C}_3\text{H}_7-n \\
\text{CO}_2\text{Et} & \quad \text{CH}_3\text{MgCl} \quad \text{Fe(acac)}_3 \quad (5 \text{ mol\%}) \\
\text{in toluene (5 mL)} & \quad 0.4 \text{ mL} \\
0.4 \text{ mmol} & \quad 3 \text{ equiv}
\end{align*}
\]

The reaction of Fe(acac)$_3$ (0.0071 g, 5 mol\%, 0.02 mmol), 1a (0.0929 g, 0.4 mmol), toluene (5 mL), and a solution of CH$_3$MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2a (0.0767 g, 77\%): Liquid; 1H NMR (400 MHz, CDCl$_3$) 7.36-7.27 (m, 4 H), 7.22 (t, $J = 7.0$ Hz, 1 H), 6.49 (s, 1 H), 4.21-4.14 (m, 2 H), 3.69 (dd, $J_1 = 8.0$ Hz, $J_1 = 6.8$ Hz, 1 H), 1.84 (d, $J = 1.6$ Hz, 3 H), 1.81-1.72 (m, 1 H), 1.60-1.48 (m, 1 H), 1.29 (t, $J = 7.2$ Hz, 3 H), 1.25-1.15 (m, 1 H), 1.15-1.02 (m, 1 H), 0.76 (t, $J = 7.2$ Hz, 3 H); 13C NMR (CDCl$_3$, 100 MHz) 173.9, 137.7, 135.4, 129.2, 128.8, 128.1, 126.4, 60.5, 46.4, 31.6, 20.2, 19.6, 14.2, 13.8; MS (m/z) 246 (M$^+$, 30.48), 131 (100); IR (neat, cm$^{-1}$) 2960, 2871, 1731, 1651, 1443, 1179, 1031; HRMS calcd for C$_{16}$H$_{22}$O$_2$ (M$^+$) 246.1620, found 246.1620.

(2) Methyl 4-phenyl-3-methyl-2-propyl-3(Z)-butenoate (Iz-9-197, Iz-10-114, Iz-10-115)

\[
\begin{align*}
\text{Ph} & \quad \text{C}_3\text{H}_7-n \\
\text{CO}_2\text{Me} & \quad \text{CH}_3\text{MgCl} \quad \text{Fe(acac)}_3 \quad (0.5 \text{ mol\%}) \\
\text{in toluene (5 mL)} & \quad 0.4 \text{ mL} \\
0.4 \text{ mmol} & \quad 3 \text{ equiv}
\end{align*}
\]

The reaction of Fe(acac)$_3$ (0.0006 g, 0.5 mol\%, 0.002 mmol), 1b (0.0864 g, 0.4 mmol), toluene (5 mL), and a solution of CH$_3$MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2b (0.0795 g, 86\%): Liquid; 1H NMR (400 MHz, CDCl$_3$) 7.37-7.31 (m, 2 H), 7.30-7.26 (m, 2 H), 7.25-7.20 (m, 1 H), 6.50 (s, 1 H), 3.76-3.71 (m, 4 H), 1.84 (d, $J = 1.6$ Hz, 3 H), 1.84-1.73 (m, 1 H), 1.60-1.48 (m, 1 H), 1.28-1.16 (m, 1 H), 1.16-1.03 (m,
1 H), 0.77 (t, J = 7.2 Hz, 3 H); 13C NMR (CDCl$_3$, 100 MHz) 174.4, 137.6, 135.2, 129.2, 128.7, 128.2, 126.4, 51.8, 46.3, 31.7, 20.2, 19.6, 13.8; MS (m/z) 232 (M$^+$, 34.90), 131 (100); IR (neat, cm$^{-1}$) 2957, 2873, 1733, 1652, 1600, 1434, 1168; HRMS calcd for C$_{15}$H$_{20}$O$_2$ (M$^+$) 232.1463, found 232.1465.

(3) Benzyl 4-phenyl-3-methyl-2-propyl-3(Z)-butenoate (Iz-9-200)

The reaction of Fe(acac)$_3$ (0.0074 g, 5 mol%, 0.02 mmol), 1c (0.1162 g, 0.4 mmol), toluene (5 mL), and a solution of CH$_3$MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2c (0.1028 g, 84%): Liquid; 1H NMR (400 MHz, CDCl$_3$) 7.40-7.32 (m, 5 H), 7.32-7.27 (m, 4 H), 7.25-7.20 (m, 1 H), 6.53 (s, 1 H), 5.22 (d, J = 12.4 Hz, 1 H), 5.17 (d, J = 12.4 Hz, 1 H), 5.17 (d, J = 12.4 Hz, 1 H), 3.79 (t, J = 7.8 Hz, 1 H), 1.84 (d, J = 0.4 Hz, 3 H), 1.83-1.77 (m, 1 H), 1.65-1.55 (m, 1 H), 1.30-1.17 (m, 1 H), 1.17-1.05 (m, 1 H), 0.79 (t, J = 7.2 Hz, 3 H); 13C NMR (CDCl$_3$, 100 MHz) 173.6, 137.6, 136.2, 135.1, 129.4, 128.8, 128.5, 128.1, 128.0, 127.8, 126.4, 66.2, 46.4, 31.6, 20.2, 19.6, 13.8; MS (m/z) 308 (M$^+$, 7.09), 91 (100); IR (neat, cm$^{-1}$) 2958, 2872, 1733, 1650, 1599, 1456, 1163; HRMS calcd for C$_{21}$H$_{24}$O$_2$ (M$^+$) 308.1776, found 308.1767.

(4) Ethyl 2,3-dimethyl-4-phenyl-3(Z)-butenoate (Iz-9-171, Iz-10-58, cgb-1-75, cgb-1-76)

The reaction of Fe(acac)$_3$ (0.0028 g, 2 mol%, 0.008 mmol), 1d (0.0853 g, 0.4 mmol),
toluene (5 mL), and a solution of CH₃MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2d (0.0814 g, 88%): Liquid; ¹H NMR (300 MHz, CDCl₃) 7.38-7.22 (m, 5 H), 6.44 (s, 1 H), 4.24-4.16 (m, 2 H), 3.84 (q, J = 7.2 Hz, 1 H), 1.86 (d, J = 1.5 Hz, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 1.25 (t, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) 174.2, 137.7, 136.8, 128.6, 128.2, 127.9, 126.4, 60.6, 40.9, 19.5, 15.3, 14.2; MS (m/z) 218 (M⁺, 22.71), 145 (100); IR (neat, cm⁻¹) 2979, 2940, 1733, 1652, 1599, 1443, 1187; HRMS calcd for C₁₄H₁₈O₂ (M⁺) 218.1307, found 218.1316.

(5) Ethyl 4-(4’-bromophenyl)-3-methyl-2-propyl-3(Z)-butenoate (lz-10-3, lz-10-112, lz-10-113)

\[
\begin{align*}
\text{Br} & \quad \text{C}_3\text{H}_7-\text{n} \\
\text{CO}_2\text{Et} & \quad \text{CO}_2\text{Et}
\end{align*}
\]

The reaction of Fe(acac)₃ (0.0029 g, 2 mol%, 0.008 mmol), 1e (0.1235 g, 0.4 mmol), toluene (5 mL), and a solution of CH₃MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2e (0.1145 g, 88%): Liquid; ¹H NMR (400 MHz, CDCl₃) 7.44 (d, J = 7.6 Hz, 2 H), 7.17 (d, J = 7.6 Hz, 2 H), 6.39 (s, 1 H), 4.17 (q, J = 7.2 Hz, 2 H), 3.60 (dd, J₁ = 8.0 Hz, J₂ = 7.2 Hz, 1 H), 1.82 (d, J = 1.2 Hz, 3 H), 1.80-1.70 (m, 1 H), 1.58-1.47 (m, 1 H), 1.28 (t, J = 7.2 Hz, 3 H), 1.24-1.13 (m, 1 H), 1.13-1.01 (m, 1 H), 0.77 (t, J = 7.2 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) 173.5, 136.5, 136.3, 131.3, 130.5, 128.0, 120.3, 60.6, 46.5, 31.6, 20.2, 19.6, 14.2, 13.8; MS (m/z) 326 (M⁺ (⁷⁹Br), 15.06), 324 (M⁺ (⁷⁹Br), 17.46), 172 (100); IR (neat, cm⁻¹) 2959, 2872, 1732, 1650, 1587, 1487, 1178; HRMS calcd for C₁₆H₁₇O₂ ³⁷⁹Br (M⁺ (⁷⁹Br)) 324.0725, found 324.0734.
(6) Ethyl 2,3-dimethyl-4-(4'-bromophenyl)-3(Z)-butenoate (Iz-10-15, cgb-1-66, 67)

![Chemical structure](attachment:image.png)

The reaction of Fe(acac)_3 (0.0007 g, 0.5 mol%, 0.002 mmol), 1f (0.1119 g, 0.4 mmol), toluene (5 mL), and a solution of CH_3MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2f (0.1044 g, 88%): Liquid; ^1H NMR (400 MHz, CDCl_3) 7.44 (d, J = 8.6 Hz, 2 H), 7.14 (d, J = 8.6 Hz, 2 H), 6.34 (s, 1 H), 4.22-4.10 (m, 2 H), 3.73 (q, J = 6.8 Hz, 1 H), 1.82 (d, J = 1.2 Hz, 3 H), 1.26 (d, J = 7.2 Hz, 3 H), 1.22 (d, J = 6.8 Hz, 3 H); ^13C NMR (CDCl_3, 100 MHz) 173.9, 137.7, 136.5, 131.3, 130.3, 126.7, 120.4, 60.7, 40.9, 19.5, 15.2, 14.2; MS (m/z) 298 (M⁺ (81Br), 12.02), 296 (M⁺ (79Br), 12.66), 144 (100); IR (neat, cm⁻¹) 2979, 2939, 1733, 1648, 1587, 1487, 1185; HRMS calcd for C_{14}H_{17}O_{279Br} (M⁺ (79Br)) 296.0412, found 296.0413.

(7) Ethyl 3-methyl-2-propyl-3(Z)-undecenoate (Iz-9-156)

![Chemical structure](attachment:image.png)

The reaction of Fe(acac)_3 (0.0073 g, 5 mol%, 0.02 mmol), 1g (0.1005 g, 0.4 mmol), toluene (5 mL), and a solution of CH_3MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2g (0.0909 g, 85%): Liquid; ^1H NMR (400 MHz, CDCl_3) 5.30 (t, J = 7.4 Hz, 1 H), 4.10 (q, J = 6.9 Hz, 2 H), 3.46 (t, J = 7.4 Hz, 1 H), 2.10-1.97 (m, 2 H), 1.84-1.74 (m, 1 H), 1.63 (d, J = 0.9 Hz, 3 H), 1.52-1.42 (m, 1 H), 1.38-1.19 (m, 15 H), 0.92-0.82 (m, 6
H); 13C NMR (CDCl$_3$, 100 MHz) 174.0, 131.7, 129.4, 60.2, 46.1, 31.8, 31.5, 29.8, 29.3, 29.2, 27.8, 22.7, 20.5, 19.5, 14.2, 14.1, 14.0; MS (m/z) 268 (M$^+$, 4.83), 55 (100); IR (neat, cm$^{-1}$) 2958, 2927, 2856, 1735, 1465, 1176; HRMS calcd for C$_{17}$H$_{32}$O$_2$ (M$^+$) 268.2402, found 268.2399.

(8) Methyl 3-methyl-2-benzyl-3(Z)-octenoate (Iz-10-4, cgb-1-73)

$$\text{n-C}_4\text{H}_9 \text{Bn} \text{CO}_2\text{Me} + \text{CH}_3\text{MgCl in THF (3 M)} \xrightarrow{\text{Fe(acac)}_3 (2 \text{ mol\%})} \text{n-C}_4\text{H}_9 \text{BnCO}_2\text{Me}$$

The reaction of Fe(acac)$_3$ (0.0027 g, 5 mol%, 0.008 mmol), 1h (0.0983 g, 0.4 mmol), toluene (5 mL), and a solution of CH$_3$MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) afforded Z-2h (0.0895 g, 85%): Liquid; 1H NMR (300 MHz, CDCl$_3$) 7.29-7.22 (m, 2 H), 7.21-7.14 (m, 3 H), 5.27 (t, $J = 7.2$ Hz, 1 H), 3.78 (t, $J = 7.8$ Hz, 1 H), 3.64 (s, 3 H), 3.21 (dd, $J_1 = 13.8$ Hz, $J_2 = 7.8$ Hz, 1 H), 2.75 (dd, $J_1 = 13.8$ Hz, $J_2 = 7.8$ Hz, 1 H), 2.00-1.86 (m, 1 H), 1.83-1.77 (m, 1 H), 1.71 (s, 3 H), 1.26-1.16 (m, 3 H), 1.16-1.00 (m, 1 H), 0.84 (t, $J = 6.9$ Hz, 3 H); 13C NMR (CDCl$_3$, 100 MHz) 173.8, 139.5, 130.6, 130.1, 128.9, 128.2, 126.1, 51.7, 48.4, 35.6, 31.6, 27.4, 22.3, 19.8, 13.9; MS (m/z) 260 (M$^+$, 0.16), 201 ((M-CO$_2$Me)$^+$, 6.55), 169 (100); IR (neat, cm$^{-1}$) 2955, 2858, 1738, 1605, 1497, 1161; Elemental analysis: Calcd for C$_{17}$H$_{24}$O$_2$: C, 78.42; H, 9.29; Found: C, 78.39; H, 9.29.

(9) Ethyl 4-phenyl-3-butyl-2-propyl-3(Z)-butenoate (cgb-2-26)

$$\text{Ph} \text{CO}_2\text{Et} + \text{n-BuMgCl in THF (1.5 M)} \xrightarrow{\text{Fe(acac)}_3 (5 \text{ mol\%})} \text{Ph}\text{Bu} \text{CO}_2\text{Et}$$

The reaction of Fe(acac)$_3$ (0.0074 g, 5 mol%, 0.02 mmol), 1a (0.0925 g, 0.4 mmol),
toluene (5 mL), and a solution of \(n \)-BuMgCl in THF (0.8 mL, 1.5 M, 3 equiv, 1.2 mmol, prepared from the reaction of magnesium turnings (17 mmol) with \(n \)-butyl chloride (15 mmol) in THF(10 mL)) afforded Z-2i (0.0812 g, 70%): Liquid; \(^1\)H NMR (300 MHz, CDCl\(_3\)) 7.36-7.27 (m, 4 H), 7.25-7.18 (m, 1 H), 6.49 (s, 1 H), 4.16 (q, \(J = 7.1 \) Hz, 2 H), 3.71 (dd, \(J_1 = 8.1 \) Hz, \(J_2 = 6.9 \) Hz, 1 H), 2.15-2.08 (m, 2 H), 1.85-1.71 (m, 1 H), 1.59-1.43 (m, 3 H), 1.43-1.33 (m, 2 H), 1.28 (t, \(J = 7.2 \) Hz, 3 H), 1.23-1.00 (m, 2 H), 0.94 (t, \(J = 7.2 \) Hz, 3 H), 0.75 (t, \(J = 7.4 \) Hz, 3 H); \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) 174.2, 139.6, 138.1, 128.8, 128.1, 127.7, 126.3, 60.4, 46.5, 31.8, 31.5, 30.7, 22.7, 20.3, 14.2, 14.1, 13.8; MS (m/z) 311.0 ((M+Na\(^+\)), 100); IR (neat, cm\(^{-1}\)) 2958, 2932, 2872, 1732, 1643, 1599, 1465, 1178; HRMS calcd for C\(_{19}\)H\(_{28}\)O\(_2\)Na (M+Na\(^+\)) 311.1982, found 311.1981.

(10) Ethyl 4-phenyl-3-(\(c \)-hexyl)-2-propyl-3(Z)-butenoate (cgb-1-20)

![Chemical structure diagram]

The reaction of Fe(acac\(_3\)) (0.0069 g, 5 mol%, 0.02 mmol), 1a (0.0923 g, 0.4 mmol), toluene (5 mL), and a solution of \(c \)-hexMgCl in THF (0.8 mL, 3 equiv, 1.2 mmol, prepared from the reaction of magnesium turnings (17 mmol) with \(c \)-hexyl chloride (15 mmol) in THF(10 mL)) afforded Z-2j (0.1074 g, 86%): Liquid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) 7.36-7.27 (m, 4 H), 7.22-7.18 (m, 1 H), 6.54 (s, 1 H), 4.15 (q, \(J = 7.2 \) Hz, 2 H), 3.71 (t, \(J = 7.4 \) Hz, 1 H), 2.11-2.02 (m, 1 H), 1.82-1.65 (m, 6 H), 1.55-1.40 (m, 1 H), 1.40-1.00 (m, 10 H), 0.73 (t, \(J = 7.2 \) Hz, 3 H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) 174.2, 145.6, 138.2, 128.9, 128.1, 127.2, 126.2, 60.4, 46.8, 39.8, 35.3, 35.0, 31.9, 27.1, 27.0, 26.2, 20.4, 14.2, 13.8; MS (m/z) 314 (M\(^+\), 9.93), 117 (100); IR (neat, cm\(^{-1}\)) 2928, 2852, 1732, 1643,
(11) Ethyl 3-(c-hexyl)-2-propyl-3(Z)-undecenoate (lz-10-76)

\[
\begin{align*}
1g & \quad \text{n-C}_7\text{H}_{15} \quad \text{C}_3\text{H}_7 - n \\
\text{CO}_2\text{Et} & \quad \text{+ c-hexMgCl in THF (1.5 M)} \\
\text{Fe(acac)}_3 (5 \text{ mol\%}) & \quad \text{Fe(acac)}_3 (5 \text{ mol\%}) \\
\text{-78 °C, 1 h} & \quad -78 ^\circ \text{C, 1 h} \\
\text{Z-2k} & \quad \text{n-C}_7\text{H}_{15} \quad \text{CO}_2\text{Et}
\end{align*}
\]

The reaction of Fe(acac)_3 (0.0073 g, 5 mol%, 0.02 mmol), 1a (0.1002 g, 0.4 mmol),
toluene (5 mL), and a solution of c-hexMgCl in THF (0.8 mL, 3 equiv, 1.2 mmol,
prepared from the reaction of magnesium turnings (17 mmol) with c-hexyl chloride (15
mmol) in THF(10 mL)) afforded Z-2k (0.1196 g, 90%): Liquid; ^1H NMR (400 MHz,
CDCl_3) 5.30 (t, J = 7.2 Hz, 1 H), 4.08 (q, J = 7.2 Hz, 2 H), 3.36 (t, J = 7.2 Hz, 1 H),
2.14-1.96 (m, 2 H), 1.82-1.82 (m, 2 H), 1.75-1.50 (m, 5 H), 1.46-1.05 (m, 21 H),
0.93-0.82 (m, 6 H); ^13C NMR (CDCl_3, 100 MHz) 174.4, 142.3, 127.1, 60.1, 46.7, 40.9,
34.7, 34.6, 32.2, 31.8, 29.9, 29.2, 27.7, 27.1, 27.0, 26.3, 22.6, 20.9, 14.2, 14.08, 14.06;
MS (m/z) 336 (M^+, 16.81), 293 (100); IR (neat, cm\(^{-1}\)) 2926, 2853, 1733, 1448, 1177;
HRMS calcd for C_{22}H_{40}O_{2} (M^+) 336.3023, found 336.3037.

(12) Ethyl 4-phenyl-3-(c-hexyl)-2-methyl-3(Z)-butenoate (lz-10-75)

\[
\begin{align*}
1d & \quad \text{Ph} \quad \text{CH}_3 \\
\text{CO}_2\text{Et} & \quad \text{+ c-hexMgCl in THF (1.5 M)} \\
\text{Fe(acac)}_3 (5 \text{ mol\%}) & \quad \text{Fe(acac)}_3 (5 \text{ mol\%}) \\
\text{-78 °C, 1 h} & \quad -78 ^\circ \text{C, 1 h} \\
\text{Z-2l} & \quad \text{Ph} \quad \text{CO}_2\text{Et}
\end{align*}
\]

The reaction of Fe(acac)_3 (0.0071 g, 5 mol%, 0.02 mmol), 1d (0.0829 g, 0.4 mmol),
toluene (5 mL), and a solution of c-hexMgCl in THF (0.8 mL, 3 equiv, 1.2 mmol,
prepared from the reaction of magnesium turnings (17 mmol) with c-hexyl chloride (15
mmol) in THF(10 mL)) afforded Z-2l (0.0911 g, 78%): Liquid; ^1H NMR (400 MHz,
CDCl\textsubscript{3}) 7.35-7.32 (m, 2 H), 7.31-7.25 (m, 2 H), 7.22 (t, J = 7.0 Hz, 1 H), 6.47 (s, 1 H), 4.18-4.08 (m, 2 H), 3.84 (q, J = 7.1 Hz, 1 H), 2.04-1.96 (m, 1 H), 1.82-1.65 (m, 5 H), 1.40-1.18 (m, 11 H); 13C NMR (CDCl\textsubscript{3}, 100 MHz) 174.5, 147.0, 138.1, 128.7, 128.1, 126.3, 126.1, 60.5, 41.4, 40.5, 35.6, 34.7, 27.1, 26.9, 26.2, 15.7, 14.2; MS (m/z) 286 (M+, 35.25), 184 (100); IR (neat, cm-1) 2927, 2852, 1732, 1646, 1599, 1447, 1187; HRMS calcd for C\textsubscript{19}H\textsubscript{26}O\textsubscript{2} (M+) 286.1927, found 286.1932.

(13) Ethyl 3-(s-butyl)-2-propyl-3(Z)-undecenoate (lz-11-82)

\[
\begin{array}{c}
\text{n-C\textsubscript{7}H\textsubscript{15}} \\
+ \text{s-BuMgBr in THF (1.5 M)}
\end{array} \xrightarrow{\text{Fe(acac)}_3 (5 \text{ mol\%})-78 \degree C, 1 \text{ h}} \text{Z-2m}
\]

The reaction of Fe(acac)\textsubscript{3} (0.0072 g, 5 mol\%, 0.02 mmol), 1\text{g} (0.0990 g, 0.4 mmol), toluene (5 mL), and a solution of s-BuMgBr in THF (0.8 mL, 3 equiv, 1.2 mmol, prepared from the reaction of magnesium turnings (17 mmol) with s-butyl bromide (15 mmol) in THF(10 mL)) afforded Z-2m (0.1143 g, 94%): Liquid; 1H NMR (300 MHz, CDCl\textsubscript{3}) 5.30-5.23 (m, 1 H), 4.14-4.00 (m, 2 H), 3.38-3.31 (m, 1H), 2.16-1.96 (m, 3 H), 1.96-1.80 (m, 1 H), 1.50-1.18 (m, 18 H), 0.99-0.73 (m, 12 H); MS (m/z) 310 (M+, 5.86), 267 ((M-C\textsubscript{3}H\textsubscript{7})+, 100); IR (neat, cm-1) 2959, 2927, 2873, 2857, 1734, 1647, 1463, 1178; Elemental analysis: Cald for C\textsubscript{20}H\textsubscript{38}O\textsubscript{2}: C, 77.36; H, 12.33; Found: C, 77.37; H, 12.37.

(14) Ethyl 3-phenyl-3(E)-octenoate (lz-10-38, lz-10-117)

\[
\begin{array}{c}
\text{n-C\textsubscript{4}H\textsubscript{9}} \\
+ \text{PhMgCl in THF (1.9 M)}
\end{array} \xrightarrow{\text{Fe(acac)}_3 (2 \text{ mol\%})-78 \degree C, 1.3 \text{ h}} \text{E-2n}
\]

The reaction of Fe(acac)\textsubscript{3} (0.0027 g, 2 mol\%, 0.008 mmol), 1\text{i} (0.0681 g, 0.4 mmol),
toluene (5 mL), and a solution of PhMgCl in THF (0.6 mL, 1.9 M, 3 equiv, 1.1 mmol) afforded E-2n (0.0628 g, 63%): Liquid; 1H NMR (400 MHz, CDCl$_3$) 7.38 (d, $J = 7.6$ Hz, 2 H), 7.31 (t, $J = 7.4$ Hz, 2 H), 7.22 (t, $J = 7.4$ Hz, 1 H), 5.95 (t, $J = 7.2$ Hz, 1 H), 4.11 (q, $J = 7.1$ Hz, 2 H), 3.52 (s, 2 H), 2.24 (q, $J = 7.2$ Hz, 2 H), 1.52-1.37 (m, 4 H), 1.19 (t, $J = 7.1$ Hz, 3 H), 0.95 (t, $J = 7.2$ Hz, 3 H); 13C NMR (CDCl$_3$, 100 MHz) 171.4, 142.4, 132.7, 132.3, 128.2, 126.7, 125.9, 60.6, 36.0, 31.5, 28.7, 22.4, 14.0, 13.9; MS (m/z) 246 (M$^+$, 33.08), 129 (100); IR (neat, cm$^{-1}$) 2958, 2930, 2872, 1736, 1599, 1446, 1154; HRMS calcd for C$_{16}$H$_{22}$O$_2$ (M$^+$) 246.1614, found 246.1619.

(15) Ethyl 3-phenyl-3(E)-undecenoate (Iz-10-95)

The reaction of Fe(acac)$_3$ (0.0074 g, 5 mol%, 0.02 mmol), 1j (0.0829 g, 0.4 mmol), toluene (5 mL), and a solution of PhMgCl in THF (0.6 mL, 1.9 M, 3 equiv, 1.1 mmol) afforded E-2o (0.0720 g, 63%): Liquid; 1H NMR (400 MHz, CDCl$_3$) 7.39 (d, $J = 7.6$ Hz, 2 H), 7.31 (t, $J = 7.6$ Hz, 2 H), 7.23 (t, $J = 7.6$ Hz, 1 H), 5.96 (t, $J = 7.2$ Hz, 1 H), 4.11 (q, $J = 7.2$ Hz, 2 H), 3.52 (s, 2 H), 2.23 (q, $J = 7.5$ Hz, 2 H), 1.52-1.43 (m, 2 H), 1.41-1.23 (m, 8 H), 1.19 (t, $J = 7.2$ Hz, 3 H), 0.91 (t, $J = 6.8$ Hz, 3 H); 13C NMR (CDCl$_3$, 100 MHz) 171.4, 142.4, 132.8, 132.3, 128.2, 126.7, 125.9, 60.6, 36.0, 31.8, 29.4, 29.3, 29.2, 29.0, 22.6, 14.1; MS (m/z) 288 (M$^+$, 33.17), 129 (100); IR (neat, cm$^{-1}$) 2926, 2855, 1736, 1599, 1446, 1154; HRMS calcd for C$_{19}$H$_{28}$O$_2$ (M$^+$) 288.2084, found 288.2082.

(16) Ethyl 4-phenyl-3-vinyl-2-propyl-3(Z)-butenoate (Iz-11-78)
The reaction of Fe(acac)$_3$ (0.0067 g, 5 mol%, 0.02 mmol), 1a (0.0923 g, 0.4 mmol), toluene (5 mL), and a solution of vinyl magnesium chloride in THF (0.71 mL, 1.7 M, 3 equiv, 1.2 mmol) afforded Z-2p (0.0850 g, 82%): Liquid; 1H NMR (300 MHz, CDCl$_3$) 7.39-7.30 (m, 4 H), 7.28-7.21 (m, 1 H), 6.79 (s, 1 H), 6.37 (dd, $J_1 = 17.6$ Hz, $J_2 = 11.1$ Hz, 1 H), 5.40 (dd, $J_1 = 17.6$ Hz, $J_2 = 1.1$ Hz, 1 H), 5.11 (d, $J = 11.1$ Hz, 1 H), 4.18 (q, $J = 7.1$ Hz, 2 H), 3.81 (dd, $J_1 = 8.4$ Hz, $J_2 = 6.3$ Hz, 1 H), 1.96-1.83 (m, 1 H), 1.74-1.60 (m, 1 H), 1.27 (t, $J = 7.2$ Hz, 3 H), 1.40-1.12 (m, 2 H), 0.73 (t, $J = 7.2$ Hz, 3 H); 13C NMR (CDCl$_3$, 75 MHz) 174.1, 137.8, 137.2, 137.1, 131.9, 128.8, 128.3, 127.0, 114.9, 60.7, 44.5, 31.9, 20.4, 14.2, 13.8; MS (m/z) 280.9 ((M+Na$^+$), 100); IR (neat, cm$^{-1}$) 2960, 2934, 2872, 1732, 1607, 1492, 1446, 1185; HRMS calcd for C$_{17}$H$_{22}$O$_2$Na (M+Na$^+$) 281.1512, found 281.1511.

(17) Ethyl 3-vinyl-2-propyl-3(Z)-undecenoate (lz-11-79)

The reaction of Fe(acac)$_3$ (0.0069 g, 5 mol%, 0.02 mmol), 1g (0.0977 g, 0.4 mmol), toluene (5 mL), and a solution of vinyl magnesium chloride in THF (0.71 mL, 1.7 M, 3 equiv, 1.2 mmol) afforded Z-2q (0.0938 g, 86%): Liquid; 1H NMR (300 MHz, CDCl$_3$) 6.21 (dd, $J_1 = 17.7$ Hz, $J_2 = 11.1$ Hz, 1 H), 5.65 (t, $J = 7.4$ Hz, 1 H), 5.15 (d, $J = 17.7$ Hz, 1 H), 4.91 (d, $J = 11.1$ Hz, 1 H), 4.11 (q, $J = 7.2$ Hz, 2 H), 3.48 (dd, $J_1 = 8.3$ Hz, $J_2 = 6.5$ Hz, 1 H).
Fe(acac)₃-Catalyzed Conjugate Addition of 1a with Grignard Reagents followed by quenching with D₂O affording Ethyl 4-phenyl-3-methyl-3-deuterium-2-propyl-3(Z)-butenoate Z-9 (lz-10-1)

![Diagram of the reaction]

The reaction of Fe(acac)₃ (0.0072 g, 5 mol%, 0.02 mmol), 1a (0.0940 g, 0.4 mmol), and toluene (5 mL) with a solution of CH₃MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) formed the solution at -78 °C after 2 h. The reaction mixture was quenched slowly with D₂O (0.5 mL) at -78 °C. After warming up to rt naturally, water (5 mL) was added. After extraction with diethyl ether (3 x 30 mL), the organic layer was washed subsequently with diluted HCl (1%, aq.), a saturated aqueous solution of NaHCO₃, brine, and dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1) afforded Z-9 (0.0909 g, 89%) (D: 97%): Liquid;

¹H NMR (400 MHz, CDCl₃) 7.36-7.27 (m, 4 H), 7.22 (t, J = 7.0 Hz, 1 H), 6.49 (s, 1 H), 4.21-4.14 (m, 2 H), 3.70 (t, J = 7.6 Hz, 0.03 H), 1.84 (s, 3 H), 1.81-1.72 (m, 1 H), 1.60-1.48 (m, 1 H), 1.29 (t, J = 7.2 Hz, 3 H), 1.25-1.15 (m, 1 H), 1.15-1.02 (m, 1 H), 0.77
1,2-Addition Reaction of Acrylaldehyde with the Organometallic Intermediate 8
Formed via Fe(acac)₃-Catalyzed Conjugate Addition of 1d with CH₃MgCl. Synthesis of Ethyl 4-phenyl-3-methyl-2-(1′-hydroxyl-2-propenyl)-2-methyl-3(Z)-butenoate Z-10:

The reaction of Fe(acac)₃ (0.0074 g, 5 mol%, 0.02 mmol), 1d (0.0803 g, 0.4 mmol), and toluene (5 mL) with a solution of CH₃MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) formed the solution at -78 °C after 1 h. To the reaction mixture was added acrylaldehyde (0.0734 g, 1.3 mmol) at -78 °C. After 1.5 h, the reaction mixture was quenched slowly with saturated NH₄Cl (1 mL) at -78 °C, followed by warming up to rt naturally and the addition of water (5 mL) at this temperature. After extraction with diethyl ether (3 x 30 mL), the organic layer was washed subsequently with diluted HCl (1%, aq.), a saturated aqueous solution of NaHCO₃, brine, and dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 15/1) afforded Z-10 (major isomer: 0.0531 g, 51%, minor isomer: 0.0218 g, 18%, dr = 71/29). Major isomer (more polar): Liquid; ¹H NMR (400 MHz, CDCl₃) 7.25 (t, J = 7.2 Hz, 2 H), 7.20-7.14 (m, 3 H), 6.60 (s, 1 H), 6.15-6.05 (m, 1 H), 5.32 (d, J = 17.2 Hz, 1 H), 5.23 (d,
$J = 10.8 \text{ Hz, 1 H), 4.39 (t, } J = 5.6 \text{ Hz, 1 H), 3.79-3.70 (m, 1 H), 3.58-3.48 (m, 1 H), 2.71$
(d, $J = 6.4 \text{ Hz, 1 H), 1.97 (d, } J = 1.2 \text{ Hz, 3 H), 1.27 (s, 3 H), 1.09 (t, } J = 7.2 \text{ Hz, 3 H); } ^{13}\text{C}$
NMR (CDCl$_3$, 100 MHz) 175.0, 138.2, 137.2, 136.1, 129.9, 128.7, 127.5, 126.4, 116.6,
76.5, 60.5, 55.3, 23.8, 21.1, 13.7; MS (ESI, m/z) 297.1 ((M+Na$^+$), 100); IR (neat, cm$^{-1}$)
3509, 2982, 2939, 1729, 1645, 1598, 1442, 1241; Elemental analysis: Cald for C$_{17}$H$_{22}$O$_3$:
C, 74.42; H, 8.08; Found: C, 74.46; H, 8.05. The following 1H NMR data were recorded
for the minor isomer (less polar): Liquid, 1H NMR (400 MHz, CDCl$_3$) 7.25 (t, $J = 7.4 \text{ Hz,}$
2 H), 7.18 (t, $J = 7.0 \text{ Hz, 1 H), 7.08 (d, } J = 8.0 \text{ Hz, 2 H), 6.56 (s, 1 H), 5.83-5.74 (m, 1 H),}$
5.34 (d, $J = 17.2 \text{ Hz, 1 H), 5.21 (d, } J = 10.8 \text{ Hz, 1 H), 4.41 (t, } J = 6.4 \text{ Hz, 1 H), 3.67 (d, } J$
$= 7.6 \text{ Hz, 1 H), 3.55-3.43 (m, 1 H), 3.43-3.37 (m, 1 H), 2.04 (d, } J = 1.2 \text{ Hz, 3 H), 1.33 (s,}$
3 H), 1.06 (t, $J = 7.0 \text{ Hz, 3 H).}$

Coupling Reaction of Methyl Chloroformate with the Organometallic Intermediate
8 Formed via Fe(acac)$_3$-Catalyzed Conjugate Addition of 1d with CH$_3$MgCl.

Synthesis of Ethyl 4-phenyl-3-methyl-2-methoxycarbonyl-2-methyl-3(Z)-butenoate
Z-11:

![Reaction Diagram]

The reaction of Fe(acac)$_3$ (0.0074 g, 5 mol%, 0.02 mmol), 1d (0.0800 g, 0.4 mmol),
and toluene (5 mL) with a solution of CH$_3$MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol)
formed the solution at -78 °C after 1 h. To the reaction mixture was added methyl
chloroformate (0.1907 g, 2 mmol) at -78 °C followed by warming up to rt naturally. After
7 h, the reaction mixture was sequentially quenched with saturated NH$_4$Cl (1 mL) at 0 °C.
and water (5 mL) at rt. After extraction with diethyl ether (3 x 30 mL), the organic layer was washed subsequently with diluted HCl (1%, aq.), a saturated aqueous solution of NaHCO₃, brine, and dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 30/1) afforded Z-11 (Z/E = 34/1) (0.0650 g, 59%): Liquid; ¹H NMR (300 MHz, CDCl₃) 7.27-7.15 (m, 5 H), 6.61 (s, 1 H), 3.95-3.82 (m, 2 H), 3.39 (s, 3 H), 1.92 (s, 3 H), 1.56 (s, 3 H), 1.18 (t, J = 7.1 Hz, 3 H); ¹³C NMR (CDCl₃, 100 MHz) 171.6, 170.9, 137.4, 134.0, 129.6, 128.5, 127.7, 126.6, 61.4, 58.8, 52.2, 23.3, 22.1, 13.7; MS (ESI, m/z) 277.4 ((M+H⁺), 100), 299.3 ((M+Na⁺), 37.50); IR (neat, cm⁻¹) 2981, 2951, 1744, 1732, 1647, 1599, 1442, 1258, 1109; Elemental analysis: Cald for C₁₆H₂₀O₄: C, 69.54; H, 7.30; Found: C, 69.56; H, 7.30.

Coupling Reaction of Acetyl Chloride with the Organometallic Intermediate 8 Formed via Fe(acac)₃-Catalyzed Conjugate Addition of 1d with CH₃MgCl. Synthesis of Ethyl 4-phenyl-3-methyl-2-methylcarbonyl-2-methyl-3(Z)-butenoate Z-12:

The reaction of Fe(acac)₃ (0.0074 g, 5 mol%, 0.02 mmol), 1d (0.0809 g, 0.4 mmol), and toluene (5 mL) with a solution of CH₃MgCl in THF (0.4 mL, 3 M, 3 equiv, 1.2 mmol) formed the solution at -78 °C after 1 h. To the reaction mixture was slowly added acetyl chloride (0.14 mL, 2 mmol) at -78 °C. After 1 h, the reaction mixture was quenched sequentially with saturated NH₄Cl (1 mL) at -78 °C and water (5 mL) at rt. After extraction with diethyl ether (3 x 30 mL), the organic layer was washed subsequently with diluted HCl (1%, aq.), a saturated aqueous solution of NaHCO₃, brine, and dried.
over anhydrous Na$_2$SO$_4$. Evaporation and column chromatography on silica gel (eluents: petroleum ether/ethyl acetate = 60/1) afforded Z-12 (0.0630 g, 61%): Liquid; 1H NMR (300 MHz, CDCl$_3$) 7.27 - 7.18 (m, 3 H), 7.14 (d, J = 6.9 Hz, 2 H), 6.65 (s, 1 H), 3.90 - 3.70 (m, 2 H), 2.04 (s, 3 H), 1.91 (d, J = 1.5 Hz, 3 H), 1.51 (s, 3 H), 1.16 (t, J = 7.1 Hz, 3 H); 13C NMR (CDCl$_3$, 75 MHz) 205.5, 171.3, 137.1, 135.0, 129.9, 128.8, 127.8, 126.9, 65.0, 61.3, 27.3, 23.6, 20.9, 13.7; MS (ESI, m/z) 283.2 ((M+Na$^+$), 100), 315.2 ((M+MeOH+Na$^+$), 15.00); IR (neat, cm$^{-1}$) 2982, 1736, 1715, 1637, 1599, 1443, 1244, 1095; Elemental analysis: Cald for C$_{16}$H$_{20}$O$_3$: C, 73.82; H, 7.74; Found: C, 73.76; H, 7.77.

References:
