Supporting Information

Four Novel 3D Triazole-based Zinc(II) Metal-organic Frameworks
Controlled by the Spacers of Dicarboxylate Ligands: Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties

En-Cui Yang, Hong-Kun Zhao, Bin Ding, Xiu-Guang Wang, and Xiao-Jun Zhao*

College of Chemistry and Life Science, Key Laboratory of Molecular Structure and Materials Performance Tianjin Normal University, Tianjin 300387, P. R. China; Tel: +86 022-23766556; E-mail: xiaojun_zhao15@yahoo.com.cn

Figure S1. Calculated and experimental X-ray powder diffraction patterns for 1.
Figure S2. Calculated and experimental X-ray powder diffraction patterns for 2.
Figure S3. Calculated and experimental X-ray powder diffraction patterns for 3.
Figure S4. Calculated and experimental X-ray powder diffraction patterns for 4.
Figure S5. (a) Structural unit of 4. (b) 1-D helical Zn-BTA chain of 4.
Scheme S1. Coordination modes of tp, ap, gt, chdc and BTA anions in compounds 1 - 4. All carboxylate groups adopt bridging dimonodentate coordination mode and BTAH adopts μ-1,3 bridging mode.
Figure S6. TGA and DTA curves for compound 1.
Figure S7. TGA and DTA curves for compound 2
Figure S8. TGA and DTA curves for compound 3.
Figure S9. TGA and DTA curves for compound 4.
Figure S10. Solid-state emission and excitation spectra of BTAH at room temperature.
Figure S11. Solid-state emission and excitation spectra of H$_2$tp at room temperature.