Supporting Information

Selective Templated Complexation of Cylindrical Macrotricyclic Host with Neutral Guests: Three Cation-Controlled Switchable Processes

Tao Hana,b and Chuan-Feng Chena,*

aBeijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China. bGraduate School, Chinese Academy of Sciences, Beijing 100049, China

Email Address: cchen@iccas.ac.cn

Contents

I. 1H NMR, 13C NMR and MS spectra of host 1 and guest 2 ----------------------------- S2

II. ESI-MS spectra of complexes between 1 and metal ions --- S5

III. UV-Vis spectra of 1, 2, and their mixture in the absence and presence of LiBr ---------------- S7

IV. Low temperature 1H NMR spectrum of the complex 1·2·2Li+ ------------------------- S8

V. The 1H NMR spectra of 1:1 mixture of 1 and 2 in the presence of different cations ------ S8

VI. The 1H NMR spectra of 1:1 mixture of 1 and 3 in the presence of different cations ------ S9

VII. Mole ratio plots, and determination of the association constants for the complexes 1·2·2Li+, 1·3·2K+ and 1·4 --- S10

VIII. Comparison of 1H NMR spectra of 1:1 mixture of 1 and 2 in the presence of LiBr and LiClO\textsubscript{4} --- S13

IX. Comparison of 1H NMR spectra of host 1 and guest 3 -- S13

X. Comparison of 1H NMR spectra of host 1 and guest 4 -- S14

XI. ESI-MS spectra for complexes 1·3·2K+ and 1·4 --- S14

XII. Crystal structure of the complex 1·3·2K+ --- S15
1. 1H NMR, 13C NMR and MS spectra of host 1 and guest 2

Figure S1. 1H NMR spectrum (300 MHz, CDCl$_3$) of 1.

Figure S2. 13C NMR spectrum (75 MHz, CDCl$_3$) of host 1.
Figure S3. 1H NMR spectrum (300 MHz, CDCl$_3$) of guest 2.

Figure S4. 13C NMR spectrum (75 MHz, CDCl$_3$) of guest 2.
Figure S5. MALDI-TOF MS of host 1.

Figure S6. ESI-MS MS of guest 2 (Negative mode; Voltage: 70V; Temperature: 550°C).
II. ESI-MS spectra of complexes between host I and metal ions

Figure S7. ESI-MS spectrum of complex 1·2Li⁺.

Figure S8. ESI-MS spectrum of complex 1·2Na⁺.
Figure S9. ESI-MS spectrum of complex 1·2K⁺.

Figure S10. ESI-MS spectrum of complex 1·Mg²⁺.
Figure S11. ESI-MS spectrum of complex 1·Ca$^{2+}$.

III. UV-Vis spectra of 1, 2, and their mixture in the absence and presence of LiBr

Figure S12. UV-Vis spectra of the indicated species (3 mM) in 1:1 CHCl$_3$/CH$_3$CN solution.
IV. Low temperature 1H NMR spectrum of the complex 1·2·2Li$^+$

![Low temperature 1H NMR spectrum of the complex 1·2·2Li$^+$](image)

Figure S13. 1H NMR spectrum of 1·2·2Li$^+$ ([1]$_0$=3 mM, [2]$_0$=4.5 mM, [LiBr]=30 mM) at 233K, c and uc denote ‘complex’ and ‘uncomplex’, respectively.

V. The 1H NMR spectra of 1:1 mixture of 1 and 2 in the presence of different cations

![Partial 1H NMR spectra](image)

Figure S14. Partial 1H NMR spectra (300 MHz, CD$_3$CN : CDCl$_3$=1:1, 295K) of a) 1 and 1.0 equiv of 2, b) 1 and 1.0 equiv of 2 in the presence of 10 equiv of LiBr, c) 1 and 1.0 equiv of 2 in the presence of 10 equiv of NaClO$_4$, d) 1 and 1.0 equiv of 2 in the presence of 10 equiv of KPF$_6$, e) 1 and 1.0 equiv of 2 in the presence of 10 equiv of Mg(ClO$_4$)$_2$, f) 1 and 1.0 equiv of 2 in the presence of 10 equiv of Ca(ClO$_4$)$_2$. [1]$_0$ = 2 mM
VI. The 1H NMR spectra of 1:1 mixture of 1 and 3 in the presence of different cations

Figure S15. Partial 1H NMR spectra (300 MHz, CD$_3$CN:CDCl$_3$=1:1, 295K) of (a) 1 and 1.0 equiv of 3, (b) 1 and 1.0 equiv of 3 in the presence of 10 equiv of LiBr, (c) 1 and 1.0 equiv of 3 in the presence of 10 equiv of NaClO$_4$, (d) 1 and 1.0 equiv of 3 in the presence of 10 equiv of KPF$_6$, (e) 1 and 1.0 equiv of 3 in the presence of 10 equiv of Mg(ClO$_4$)$_2$, (f) 1 and 1.0 equiv of 3 in the presence of 10 equiv of Ca(ClO$_4$)$_2$. [1]$_0$ = 2 mM.
VII. Mole ratio plots, and determination of the association constants for the complexes 1·2·2Li^+, 1·3·2K^+ and 1·4

Figure S16. Mole ratio plot for the complex 1·2·2Li^+ in 1:1 chloroform/ acetonitrile solution at 295K.

Figure S17. Scatchard plot for the complex 1·2·2Li^+ in 1:1 chloroform/ acetonitrile solution at 295K.
Figure S18. Mole ratio plot for the complex 1·3·2K⁺ in 1:1 chloroform/ acetonitrile solution at 295K.

Figure S19. Scatchard plot for the complex 1·3·2K⁺ in 1:1 chloroform/ acetonitrile solution at 295K.
Figure S20. Mole ratio plot for the complex 1·4 in 1:1 chloroform/acetonitrile solution at 295K.

Figure S21. Scatchard plot for the complex 1·4 in 1:1 chloroform/ acetonitrile solution at 295K.
VIII. Comparison of 1H NMR spectra of 1:1 mixture of 1 and 2 in the presence of LiBr and LiClO$_4$

![Figure S22](image)

Figure S22. Partial 1H NMR spectra (300 MHz, CD$_3$CN : CDCl$_3$=1:1, 295K) of (a) 1 and 1.0 equiv of 2 in the presence of 10 equiv of LiClO$_4$, (b) 1 and 1.0 equiv of 2 in the presence of 10 equiv of LiBr. $[1]_0 = 2\text{mM}$.

IX. Comparison of 1H NMR spectra of host 1 and guest 3

![Figure S23](image)

Figure S23. Partial 1H NMR spectra (300 MHz, CD$_3$CN : CDCl$_3$=1:1, 295 K) of (a) free host 1, (b) free guest 3, (c) 1 and 1.0 equiv of 3. $[1]_0 = 1\text{mM}$, (d) the mixture obtained after adding KPF$_6$ (4 equiv) to solution c.
X. Comparison of 1H NMR spectra of host 1 and guest 4

![NMR spectra](image)

Figure S24. Partial 1H NMR spectra (300 MHz, CD$_3$CN : CHCl$_3$=1:1, 295K) of (a) free host 1, (b) free guest 4, (c) 1 and 1.0 equiv of 4. $[1]_0 = 3 \text{ mM}$.

XI. ESI-MS spectra of complexes 1·3·2K$^+$ and 1·4

![ESI-MS spectrum](image)

Figure S25. ESI-MS spectrum of the complex 1·3·2K$^+$: m/z 575.6 $[1\cdot2K^+]^2+\,$, 737.6 $[1\cdot3\cdot2K^+]^2+\,$, 1111.5 $[1\cdotK^+]^+$.

S14
Figure S26. ESI-MS spectrum of the complex $1 \cdot 4$ (m/z at 657.8 for $[1 \cdot 4 \cdot 2\text{PF}_6^-]^2^+$.)

XII. Crystal structure of the complex $1 \cdot 3 \cdot 2\text{K}^+$

Figure S27. Crystal structure of $1 \cdot 3 \cdot 2\text{K}^+$. Solvent molecules, PF_6^- counterions, and hydrogen atoms are omitted for clarity.