Supporting Information for:

Carbon Networks Based on Benzocyclynes. 6. Synthesis of Graphyne Substructures via Directed Alkyne Metathesis

Charles A. Johnson II,† Yunyi Lu,‡ and Michael M. Haley*†

†Department of Chemistry and Materials Science Institute, University of Oregon, Eugene, OR 97403-1253
‡Departments of Chemistry and Materials Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
haley@uoregon.edu

Contents

Experimental S1
 a. General Data and Procedures S1
 b. Synthesis of 6a and 6b S3
 c. Synthesis of 6c S6
 d. Synthesis of 8 S7
 e. Synthesis of 3c-e, 4, and 7-11 S9
References S13
Spectral Data S14
Experimental

a. General Data. 1H and 13C NMR spectra were recorded using a Varian Inova 300 (1H 299.95 MHz, 13C 75.43 MHz) or Inova 500 (1H 500.10 MHz, 13C 125.75 MHz) spectrometer. Chemical shifts (δ) are expressed in ppm downfield from tetramethylsilane using the residual non-deuterated solvent as internal standard (CDCl$_3$: 1H 7.26 ppm, 13C 77.0 ppm). IR spectra were recorded using a Nicolet Magan-FTIR 550 spectrometer. UV-Vis spectra were recorded using a Hewlett-Packard 8453 spectrophotometer. Mass spectra were recorded using an Agilent 1100 Series LC/MSD or ION-TOF TOF-SIMS Model IV. Melting points were determined on a Meltemp II apparatus or using a TA Instruments 2920 Modulated DSC. THF was freshly distilled from potassium. 1,2,4,5-Tetraiodobenzene,1 triazine 15,2 1,2-didecyl-4,5-diiodobenzene,3 and 1,4-dibromo-2,5-diiodobenzene4 were prepared according to literature. All other chemicals were of reagent grade and used as obtained from manufacturers. Pd-, Mo-, and W-catalyzed reactions were carried out in an inert atmosphere (dry N$_2$ or Ar). Column chromatography was performed on Whatman reagent grade silica gel (230-400 mesh). Rotary chromatography was performed on a Harrison Research Chromatotron model 7924T with EM-Science 60PF$_{254}$ silica gel. Precoated silica gel plates (Sorbent Technology, UV$_{254}$, 200 µm, 5 × 20 cm) were used for analytical thin-layer chromatography.

General Deprotection/Cross-Coupling Procedure. A suspension consisting of silyl-protected ethynylarene (1 equiv) and K$_2$CO$_3$ (3-5 equiv) in Et$_2$O (0.05 M) and MeOH (0.03 M) was stirred at rt for 1 h. The suspension was diluted with Et$_2$O and washed thrice with H$_2$O. The organic layer was dried over MgSO$_4$ and concentrated in vacuo. Without further purification, a syringe pump was used to deliver a deoxygenated solution of the free acetylene in THF (0.05 M) over 12 h to a stirred, deoxygenated suspension of haloarene, Pd(PPh$_3$)$_4$ (5 mol% per transformation), and CuI (10 mol% per transformation) in THF and i-Pr$_2$NH (1:1 ratio, 0.1 M) at 35-85 °C. The reaction was stirred an additional 12 h at rt under N$_2$, concentrated, and purified by silica gel chromatography.

General Propyne Coupling Procedure. A suspension consisting of iodoarene (1 equiv), PdCl$_2$(PPh$_3$)$_2$ (5 mol% per transformation), and CuI (10 mol% per transformation) in THF (0.1 M) and i-Pr$_2$NH (0.1 M) was degassed by bubbling argon. The reaction
mixture was placed under N₂ and heated between 40-50 °C. Propyne was bubbled through the stirred reaction mixture at a rate of ~75 mL/min for 5-10 min and stirring was continued for an additional 30 min. The reaction mixture was concentrated and purified by silica gel chromatography.

b. Synthesis of 6a and 6b.

![Chemical structures and reactions](image)

4-Butyl-2-iodoaniline (12a). A suspension consisting of 4-butylaniline (2 g, 13 mmol), BTEA·ICl₂ (5.2 g, 13 mmol), and CaCO₃ (1.6 g, 16 mmol) in CH₂Cl₂ (50 mL) and MeOH (25 mL) was stirred for 1 h. The mixture was filtered, concentrated by rotary evaporation, and dissolved in Et₂O. 5% NaHSO₃ (100 mL) was added and the mixture was extracted four times with Et₂O. The combined organic fractions were dried with MgSO₄, concentrated, and chromatographed on silica with 2:1 CH₂Cl₂:hexanes to afford iodoaniline 12a (2.81 g, 76%) as a red-brown oil. ¹H NMR (300 MHz, CDCl₃): δ 7.46 (d, J = 1.8 Hz, 1H), 6.95 (dd, J = 8.4, 1.8 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 3.95 (br s, 2H), 2.46 (t, J = 7.6 Hz, 2H), 1.60-1.47 (m, 2H), 1.39-1.26 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.34, 138.29, 134.60, 129.30, 114.57, 84.31, 34.05,
33.68, 22.12, 13.88. IR (neat): v 3460, 2962, 2903, 2866 cm⁻¹. MS (CI pos) m/z (%): 276 (MH⁺, 10), 275 (M⁺, 100); C₁₀H₁₄IN (275.13).

4-Tetradecyl-2-iodoaniline (12b). A red-brown oil (71%). ¹H NMR (300 MHz, CDCl₃): δ 7.46 (d, J = 1.8 Hz, 1H), 6.95 (dd, J = 8.4, 1.8 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 3.93 (br s, 2H), 2.45 (t, J = 7.5 Hz, 2H), 1.62-1.43 (m, 2H), 1.26 (br s, 22H), 0.89 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 144.38, 138.39, 134.83, 129.36, 114.62, 84.36, 34.45, 31.90, 31.63, 29.64 (5C), 29.56, 29.45, 29.33, 29.16, 22.67, 14.11. IR (neat): v 3458, 2959, 2910, 2867 cm⁻¹. MS (CI pos) m/z (%): 416 (MH⁺, 100), 415 (M⁺, 41); C₂₀H₃₄IN (415.17).

Triazene 13a. NaNO₂ (2.9 g, 42 mmol) in H₂O (15 mL) was added dropwise to a stirred, cooled solution (0 ℃) of iodoaniline 12a (10.58 g, 38 mmol) in conc. HCl (12 mL), H₂O (20 mL), CH₃CN (20 mL), and THF (50 mL). The reaction was stirred for an additional 20 min at 0 ℃. Maintaining temperature below 0 ℃, the reaction mixture was added slowly to a stirred solution of Me₂NH (40% aq, 6.5 g, 58 mmol) and K₂CO₃ (8 g, 58 mmol) in THF (20 mL) and H₂O (20 mL) at 0 ℃. The mixture was warmed to rt, extracted twice with Et₂O, and the combined organics were washed with H₂O thrice. The organic layer was dried over MgSO₄, concentrated by rotary evaporation, and filtered through a 2.5 cm silica plug with 1:1 CH₂Cl₂:hexanes to afford a red oil. Without further purification, the intermediate red oil was reacted according to General Propyne Coupling Procedure. The mixture was concentrated and filtered through a 2.5 cm silica plug with 2:1 hexanes:CH₂Cl₂ to afford 13a (8.6 g, 88%) as a red-brown oil. ¹H NMR (300 MHz, CDCl₃): δ 7.29-7.24 (m, 2H), 7.02 (dd, J = 8.3, 2.1 Hz, 1H), 3.37 (br s, 6H), 2.54 (t, J = 7.2 Hz, 2H), 2.10 (s, 3H), 1.62-1.52 (m, 2H), 1.39-1.26 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 149.68, 139.48, 132.61, 128.45, 128.32, 116.89, 89.23, 77.80, 34.81, 33.38, 31.51, 22.56, 22.12, 13.85, 4.61. IR (neat): v 2966, 2933, 2870 cm⁻¹. MS (CI pos) m/z (%): 245 (M⁺+2, 19), 244 (MH⁺, 100), 243 (M⁺, 40); C₁₅H₂₁N₃ (243.35).

Triazene 13b. An orange oil (67%). ¹H NMR (300 MHz, CDCl₃): δ 7.30 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 1.9 Hz, 1H), 7.02 (dd, J = 8.4, 1.9 Hz, 1H), 3.80 (br s, 4H), 2.53 (t, J = 7.8 Hz, 2H), 2.10 (s, 3H), 1.70 (br s, 6H), 1.61-1.52 (m, 2H), 1.25 (br s, 22H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 149.65, 139.87, 132.71, 128.50, 118.59, 116.77, 89.34, 77.87, 35.22, 31.89, 31.27, 29.64 (5C), 29.57, 29.49, 29.33, 29.16, 25.24.
Diyne 6a. Arene 13a (2.0 g, 8.2 mmol) in CCl₄ (100 mL) was added dropwise over 30 min to a stirred solution of I₂ (10.4 g, 41 mmol) and HI (48% aq, 7.2 mL, 41 mmol) in CH₃CN (100 mL) at 60 °C. The reaction mixture was stirred for an additional 10 min, diluted with CH₂Cl₂, and then washed successively with saturated NaHCO₃, H₂O, and 5% NaHSO₃. The organic layer was dried with MgSO₄ and concentrated in vacuo. The crude product was extracted with hexanes to afford a yellow oil. A suspension of the intermediate yellow oil (2.1 g, 7 mmol), Pd(PPh₃)₄ (410 mg, 0.35 mmol), and CuI (133 mg, 0.7 mmol) in THF (100 mL) and i-Pr₂NH (100 mL) was degassed by bubbling argon. TMSA (1.4 g, 14 mmol) was added and the mixture was stirred under N₂ for 12 h at 40 °C. The solvent was removed by rotary evaporation and the crude residue was filtered through a 2.5 cm silica plug with 2:1 hexanes:CH₂Cl₂. Silica gel chromatography (hexanes) of the concentrated filtrate afforded 6a (1.8 g, 83%) as a highly viscous, pale yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.34 (d, J = 8.3 Hz, 1H), 7.20 (d, J = 1.5 Hz, 1H), 7.00 (dd, J = 8.3, 1.5 Hz, 1H), 2.54 (t, J = 7.5 Hz, 2H), 2.11 (s, 3H), 1.61-1.50 (m, 2H), 1.36-1.24 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H), 0.28 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 142.8, 131.3, 131.2, 126.9, 120.1, 113.6, 103.5, 95.6, 88.9, 86.9, 82.5, 35.2, 31.8, 30.9, 29.6 (5C), 29.5, 29.4, 29.2, 29.1, 22.5, 14.1, 4.4, 0.0. IR (neat): ν 2962, 2940, 2865 cm⁻¹. MS (Cl pos) m/z (%): 425 (M⁺+2, 39), 424 (MH⁺, 100); C₂₈H₄₅N₃ (423.68).

Diyne 6b. Triazene 13b (500 mg, 1.2 mmol) and MeI (6 mL) were combined in a sealed tube equipped with a stir bar. The reaction was stirred for 12 h at 135 °C and upon cooling, the suspension was filtered. The filtrate was concentrated and chromatographed on silica gel (hexanes) to afford a colorless oil. Without further purification, the intermediate was reacted with TMSA as per 6a to afford 6b as a pale yellow oil (328 mg, 66%). ¹H NMR (300 MHz, CDCl₃): δ 7.34 (d, J = 8.1 Hz, 1H), 7.20 (d, J = 1.5 Hz, 1H), 7.00 (dd, J = 8.1, 1.5 Hz, 1H), 2.54 (t, J = 7.5 Hz, 2H), 2.11 (s, 3H), 1.61-1.47 (m, 2H), 1.26 (br s, 2H), 0.89 (t, J = 6.9 Hz, 3H), 0.27 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 143.3, 131.7, 131.5, 127.5, 126.8, 122.7, 104.0, 97.01, 89.7, 85.5, 35.6, 31.9, 30.9, 29.6 (5C), 29.7, 29.4, 29.3, 29.1, 22.6, 14.1, 4.4, 0.0. IR (neat): ν
2924, 2853, 2159 cm\(^{-1}\). MS (CI pos) \(m/z\) (%): 481 (MH\(^+\)+THF, 13), 480 (M\(^+\)+THF, 37), 479 (M\(^+\)-1+THF, 100); C\(_{28}\)H\(_{44}\)Si (408.73).

c. Synthesis of 6c.

\[
\begin{array}{c}
\text{Dec} & \text{I} & \text{TMS} \\
\text{Dec} & \text{I} & \text{TMS}
\end{array}
\xrightarrow{\text{TMSA, Pd(PPh}_3)_4, \text{CuI, i-Pr}_2\text{NH, 80 °C}}
\begin{array}{c}
\text{Dec} & \text{TMS} & \text{propyne, Pd(PPh}_3)_4, \text{CuI, i-Pr}_2\text{NH, 45 °C}
\end{array}
\xrightarrow{51\%}
\begin{array}{c}
\text{Dec} & \text{TMS} \\
\text{Dec} & \text{TMS}
\end{array}
\xrightarrow{94\%}
\begin{array}{c}
\text{Dec} & \text{TMS} \\
\text{Dec} & \text{TMS}
\end{array}
\]

Iodoarene 14. A suspension of 1,2-didecyl-4,5-diiodobenzene (2.05 g, 3.4 mmol), Pd(PPh\(_3\))\(_4\) (194 mg, 0.2 mmol), and CuI (64 mg, 0.4 mmol) in i-Pr\(_2\)NH (25 mL) was degassed by bubbling argon. TMSA (333 mg, 3.4 mmol) was added and the mixture was stirred in a sealed tube at 80 °C for 3 h. The solvent was removed by rotary evaporation and the crude residue was filtered through a 2.5 cm silica plug with 5:1 hexanes:CH\(_2\)Cl\(_2\). Silica gel chromatography (hexanes) of the concentrated filtrate afforded 14 (1 g, 51%) as a pale yellow oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.58 (s, 1H), 7.25 (s, 1H), 2.59-2.41 (m, 4H), 1.60-1.53 (m, 4H), 1.27 (s, 28H), 0.89 (t, \(J = 6.6\) Hz, 6H), 0.28 (s, 9H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 143.33, 140.64, 138.97, 133.30, 126.68, 106.90, 97.66, 97.17, 32.22, 32.09, 30.91, 29.60, 29.56, 29.47, 29.41, 29.33, 22.69, 14.13, -0.12. IR (neat): \(\nu\) 2960, 2943, 2866, 2158 cm\(^{-1}\). MS (CI pos) \(m/z\) (%): 580 (M\(^+\), 39), 579 (M\(^+\)-1, 100); C\(_{31}\)H\(_{53}\)Si (580.30).

Diyne 6c. Arene 14 (1.1 g, 1.9 mmol) was reacted according to General Propyne Coupling Procedure. The crude residue was successively filtered through two 2.5 cm silica plugs with Et\(_2\)O and then hexanes to afford 6c (870 mg, 94%) as a yellow oil. \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta\) 7.21 (s, 1H), 7.15 (s, 1H), 2.54 (t, \(J = 7.5\) Hz, 4H), 1.60-1.49 (m, 4H), 1.26 (s, 28H), 0.88 (t, \(J = 6.3\) Hz, 6H), 0.26 (s, 9H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta\) 141.28, 140.21, 132.44, 132.17, 124.18, 122.59, 104.35, 96.51, 88.79, 78.52, 32.40, 32.33, 31.90, 30.88, 30.82, 29.66, 29.60, 29.56, 29.50, 29.33, 22.69, 14.11, 4.44, 0.51. IR (neat): \(\nu\) 2956, 2925, 2853, 2155 cm\(^{-1}\). MS (CI pos) \(m/z\) (%): 565 (MH\(^+\)+THF, 39), 564 (M\(^+\)+THF, 100), 563 (M\(^+\)-1+THF, 100); C\(_{33}\)H\(_{56}\)Si (492.42).
e. Synthesis of 8.

Tetrayne 16. Diethynylarene 6b (500 mg, 1.2 mmol) was reacted with triazene 15 (266 mg, 0.55 mmol) according to General Deprotection/Cross-Coupling Procedure at 35 °C. The residue was filtered through a 2.5 cm silica plug with 2:1 hexanes:CH₂Cl₂ and the filtrate concentrated in vacuo. Purification via column chromatography (2:1 hexanes:CH₂Cl₂) afforded 16 (343 mg, 70%) as a bright yellow, amorphous solid. ¹H NMR (500 MHz, CDCl₃): δ 7.81 (s, 1H), 7.67 (s, 1H), 7.48 (dd, J = 7.8, 5 Hz, 2H), 7.26 (br s, 2H), 7.05 (d, J = 7.8 Hz, 2H), 3.41 (br d, 6H), 2.57 (t, J = 7.5 Hz, 4H), 2.03 (s, 3H), 2.01 (s, 3H), 1.65-1.58 (m, 4H), 1.27 (br s, 44H), 0.89 (t, J = 7.3 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 147.39, 143.22, 143.18, 136.37, 131.96, 131.91, 131.71, 131.63, 127.57 (2C), 126.46, 126.36, 125.40, 123.21, 122.93, 122.87, 121.35, 119.13, 93.20, 92.62, 90.78, 90.31, 90.04, 89.99, 78.73, 78.68, 42.50, 36.33, 35.66, 31.91, 31.01, 29.64, 29.55, 29.46, 29.35, 29.20, 22.67, 14.09, 4.51. IR (neat): ν 2943, 2833, 2156 cm⁻¹. MS (Cl pos) m/z (%): 968 (MH⁺+THF, 15), 900 (M⁺+5, 19), 898 (M⁺+3, 100), 897 (M⁺+2, 63), 896 (MH⁺, 87); C₅₈H₇₈BrN₃ (895.44).
Pentayne 17. A degassed suspension consisting of arene 16 (2.05 g, 2.3 mmol), TMSA (562 mg, 5.7 mmol), Pd(PPh₃)₄ (132 mg, 0.11 mmol), and CuI (50 mg, 0.23 mmol) in THF (50 mL) and i-Pr₂NH (50 mL) was stirred at 80 °C for 12 h in a sealed tube. After cooling of the reaction vessel, the mixture was concentrated, filtered through a 2.5 cm silica plug (2:1 hexanes:CH₂Cl₂), and purified by silica gel chromatography (2:1 hexanes:CH₂Cl₂) to afford 17 (1.97 g, 94%) as a yellow, amorphous solid. ¹H NMR (300 MHz, CDCl₃): δ 7.71 (s, 1H), 7.69 (s, 1H), 7.48 (dd, J = 8.1 , 5.8 Hz, 2H), 7.26 (br s, 2H), 7.05 (d, J = 8.1 Hz, 2H), 3.42 (br d, 6H), 2.57 (t, J = 7.5 Hz, 4H), 2.01 (s, 6H), 1.65-1.57 (m, 4H), 1.27 (br s, 44H), 0.89 (t, J = 6.6 Hz, 6H), 0.27 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 151.07, 143.20, 142.95, 136.87, 131.94 (2C), 131.70, 131.58, 127.51 (2C), 126.48, 126.25 (2C), 123.03, 122.90, 121.94, 120.29, 117.88, 102.32, 100.01, 93.44, 92.53, 91.33, 90.70, 89.99, 89.90, 78.70 (2C), 43.01, 35.99, 35.63, 31.88, 30.93, 29.64, 29.62, 29.52, 29.43, 29.32, 29.16, 22.65, 14.07, 4.47, 4.44, 0.016. IR (neat): ν 2955, 2924, 2850, 2150 cm⁻¹. MS (Cl pos) m/z (%): 916 (M⁺+2, 43), 915 (MH⁺, 82), 914 (M⁺, 100); C₆₃H₈₇N₃Si (914.47).

Hexayne 8. Pentayne 17 (1.05 g, 1.1 mmol) in CCl₄ (100 mL) was added dropwise over 30 min to a stirred solution of I₂ (1.5 g, 5.8 mmol) and HI (55% aq, 0.9 mL, 5.8 mmol) in CH₃CN (100 mL) at 60 °C. The reaction mixture was stirred for an additional 10 min, diluted with CH₂Cl₂, and then washed successively with saturated NaHCO₃, H₂O, and 5% NaHSO₃. The organic layer was dried with MgSO₄, concentrated in vacuo, and extracted with hexanes to afford a light brown, highly viscous oil. Without further purification, the intermediate oil was reacted according to General Propyne Coupling Procedure. Purification by silica gel chromatography (5:1 hexanes:CH₂Cl₂) afforded 8 (698 mg, 72%) as a light brown solid. Mp: 61-63 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.67 (s, 1H), 7.59 (s, 1H), 7.48 (dd, J = 7.8, 2.7 Hz, 2H), 7.26 (br s, 2H), 7.07 (d, J = 7.8 Hz, 2H), 2.58 (t, J = 8.1 Hz, 4H), 2.15 (s, 3H), 2.01 (s, 6H), 1.65-1.56 (m, 4H), 1.28 (br s, 44H), 0.91 (t, J = 7.2 Hz, 6H), 0.31 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): δ 143.49, 143.43, 135.48, 135.05, 132.18, 132.12, 131.79, 131.76, 127.57 (2C), 126.44 (2C), 126.22, 125.59, 124.81, 124.78, 122.61, 122.56, 102.91, 99.90, 94.47, 94.15, 92.12, 90.18, 90.14 (2C), 90.11, 78.56, 78.54, 77.78, 35.67, 31.92, 31.58, 31.02, 29.64, 29.55, 29.46, 29.35, 29.20, 22.68, 14.10, 4.55, 4.49, 0.14. IR (neat): ν 2924, 2853, 2156 cm⁻¹.
MS (CI pos) m/z (%): 953 (M⁺+THF, 43), 883 (M⁺+2, 33), 882 (MH⁺, 51), 881 (M⁺, 64); C₆₄H₆₄Si (881.44).

e. Synthesis of 3a-c, 4, and 7-11.

Octayne 7a. Diethynylarene 6a (1.4 g, 5.2 mmol) was reacted with 1,2,4,5-tetraiodobenzene (500 mg, 0.86 mmol) according to General Deprotection/Cross-Coupling Procedure at 50 °C. The residue was filtered through a 2.5 cm silica plug with 1:1 hexanes:CH₂Cl₂ and the filtrate concentrated in vacuo. Purification via Chromatotron (5:1 hexanes:CH₂Cl₂) afforded 7a (536 mg, 73%) as a light yellow solid. Mp: 140-142 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.77 (s, 2H), 7.49 (d, J = 7.8 Hz, 4H), 7.27 (d, J = 1.5 Hz, 4H), 7.06 (dd, J = 7.8, 1.5 Hz, 4H), 2.59 (t, J = 7.5 Hz, 8H), 2.01 (s, 12H), 1.62-1.54 (m, 8H), 1.39-1.31 (m, 8H), 0.93 (t, J = 7.2 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃): δ 143.49, 135.63, 132.19, 131.84, 127.66, 126.43, 125.23, 122.62, 94.35, 90.38, 90.21, 78.58, 35.36, 33.17, 22.24, 13.92, 4.55. UV-Vis (CH₂Cl₂): λmax (ε) 233 (89,900), 266 (64,900), 270 (79,000), 367 (41,000) nm. IR (neat): ν 2955, 2929, 2858, 2207 cm⁻¹. MS (CI pos) m/z (%): 858 (M⁺+3, 25), 857 (M⁺+2, 66), 856 (MH⁺, 100), 855 (M⁺, 43); C₆₆H₆₂ (855.20).

Octayne 7b. A yellow solid (76%). Mp: 77-79 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.76 (s, 2H), 7.48 (d, J = 7.8 Hz, 4H), 7.26 (br s, 4H), 7.05 (d, J = 8.1 Hz, 4H), 2.57 (t, J = 7.5 Hz, 8H), 2.00 (s, 12H), 1.65-1.51 (m, 8H), 1.26 (br s, 88H), 0.88 (t, J = 6.3 Hz, 12H). ¹³C NMR (75 MHz, CDCl₃): δ 143.53, 135.64, 132.18, 131.82, 127.65, 126.44, 125.24, 122.63, 94.35, 90.39, 90.21, 78.60, 35.70, 31.92, 31.06, 29.65 (5C), 29.56, 29.47, 29.36, 29.22, 22.69, 14.13, 4.55. IR (neat): ν 2923, 2850, 2199 cm⁻¹. MS (CI pos) m/z (%): 1419 (M⁺+3, 17), 1418 (M⁺+2, 83), 1417 (MH⁺, 98), 1416 (M⁺, 100); C₁₀₆H₁₄₂ (1416.26).

Octayne 7c. An amorphous, yellow solid (77%). ¹H NMR (300 MHz, CDCl₃): δ 7.76 (s, 2H), 7.37 (s, 4H), 7.21 (s, 4H), 2.63-2.45 (m, 16H), 1.98 (s, 12H), 1.63-1.51 (m, 16H), 1.26 (br s, 112H), 0.98-0.81 (m, 24H). ¹³C NMR (75 MHz, CDCl₃): δ 141.40, 140.22, 135.24, 133.05, 132.35, 125.38, 123.77, 122.66, 94.62, 90.11, 89.33, 32.52, 32.35, 31.94, 31.92, 30.95, 30.89, 29.76, 29.71, 29.67, 29.64, 29.60, 29.55, 29.39, 29.36, 22.70, 14.11,
4.66, 4.54. IR (neat): ν 2961, 2937, 2840, 2200 cm⁻¹. MS (CI pos) m/z (%): 1754 (M⁺+3, 100), 1753 (M⁺+2, 95), 1752 (MH⁺, 71); C₁₃₀H₁₉₀ (1751.49).

Bis[12]cyclyne 3c. A suspension of 7a (70 mg, 0.08 mmol) and (t-BuO)₃W≡C-t-Bu (50 mol%) in toluene was heated for 24 h at 80 °C under an Ar atmosphere. Concentration in vacuo, purification via Chromatotron (2:1 hexanes:CH₂Cl₂), and precipitation with cold Et₂O afforded 3c (28 mg, 46%) as a bright yellow solid. Mp: 225 °C (dec). ¹H NMR (500 MHz, CDCl₃): δ 7.30 (s, 2H), 7.22 (d, J = 8 Hz, 4H), 7.20 (br s 4H), 7.00 (d, J = 8 Hz, 4H), 2.59 (t, J = 7.5 Hz, 8H), 1.62-1.54 (m, 8H), 1.39-1.31 (m, 8H), 0.93 (t, J = 7.5 Hz, 12H). ¹³C NMR: insufficient solubility to obtain spectrum. UV-Vis (CH₂Cl₂): λ max (ε) 286 (49,100), 295 (61,600), 305 (119,300), 318 (64,700), 329 (70,300), 343 (97,800), 380 (10,600), 399 (10,800) nm. Fluorescent emission ([3c] ≤ 5 × 10⁻⁵ M in toluene; Φₑ = 0.19; 399 nm excitation): λ max 488, 525, 546 nm. IR (neat): ν 2955, 2934, 2861, 2217 cm⁻¹. MS (CI pos) m/z (%): 820 (MH⁺+THF, 52), 819 (M⁺+THF, 82), 748 (MH⁺, 33); C₅₈H₅₀ (747.02).

Bis[12]cyclyne 3d. A solution of 7b (50 mg, 0.035 mmol), EtC≡Mo[N(t-Bu)(3,5-C₆H₃Me₂)]₃ (7 mg, 0.01 mmol), and silanol-POSS (58 mg, 0.06 mmol) in 1,2,4-trichlorobenzene (1.1 mL) was heated for 30 min at 75 °C and 1 torr. Removal of solvent by distillation and trituration of the crude residue with cold Et₂O afforded 3d (40 mg, 87%) as a bright yellow solid. Mp: 110-112 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.30 (s, 2H), 7.22 (d, J = 7.9 Hz, 4H), 7.18 (d, J = 1.3 Hz, 4H), 7.00 (dd, J = 7.9, 1.3 Hz, 4H), 2.53 (t, J = 7.3 Hz, 8H), 1.65-1.50 (m, 8H), 1.26 (br s, 88H), 0.88 (t, J = 6.9 Hz, 12H). ¹³C NMR: insufficient solubility to obtain spectrum. UV-Vis (CH₂Cl₂): λ max (ε) 288 (58,000), 296 (70,600), 306 (115,500), 319 (70,200), 331 (72,200), 344 (97,600), 381 (16,100), 399 (13,100) nm. Fluorescent emission ([3d] ≤ 5 × 10⁻⁵ M in toluene; 399 nm excitation): λ max 488, 525, 546 nm. IR (neat): ν 2925, 2857, 2212 cm⁻¹. MS (CI pos) m/z (%): 1380 (MH⁺+THF, 43), 1379 (M⁺+THF, 79), 1309 (M⁺+2, 85), 1308 (MH⁺, 100), 1307 (M⁺, 83); C₉₈H₁₃₀ (1307.02).

Bis[12]cyclyne 3e. A solution of 7c (60 mg, 0.03 mmol), EtC≡Mo[N(t-Bu)(3,5-C₆H₃Me₂)]₃ (13.6 mg, 0.02 mmol), and silanol-POSS (112 mg, 0.12 mmol) in 1,2,4-trichlorobenzene (20 mL) was heated for 14 h at 75 °C under 1 torr. The solvent was removed by distillation and the crude material was purified by silica gel chromatography.
(3:1 hexanes:CH₂Cl₂) to afford 3e (44 mg, 91%) as a bright yellow solid. Mp: 111-112 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.28 (s, 2H), 7.11 (s, 4H), 7.07 (s, 4H), 2.51 (t, J = 7.5 Hz, 16H), 1.65-1.47 (m, 16H), 1.28 (br s, 112H), 0.89 (t, J = 7.2 Hz, 24H). ¹³C NMR (75 MHz, CDCl₃): δ 141.97, 141.37, 134.49, 132.55, 132.32, 126.45, 124.20, 123.43, 95.19, 92.19, 91.07, 32.44, 32.32, 31.90, 30.67, 30.56, 29.70, 29.63, 29.59, 29.52, 29.53, 27.25, 26.99, 22.69, 14.11. UV-Vis (CH₂Cl₂): λmax (ε) 292 (40,000), 300 (54,000), 311 (118,000), 322 (60,000), 333 (62,700), 347 (99,500), 381 (7,700), 401 (6,700) nm. Fluorescent emission ([3e] ≤ 5 × 10⁻⁵ M in toluene; Φₖ = 0.21; 399 nm excitation): λmax 495, 533, 553 nm. IR (neat): ν 2953, 2923, 2851, 2212 cm⁻¹. MS (TOF-SIMS, pos, Bi₃⁺) m/z: 1645.6 (M++2), 1644.6 (MH+), 1643.6 (M+); C₁₂₂H₁₇₈ (1643.39).

Polyyne 9. Hexayne 8 (200 mg, 0.23 mmol) was reacted with 1,2-didecyl-4,5-diodobenzene (55 mg, 0.09 mmol) according to General Deprotection/Cross-Coupling Procedure at 85 °C. The residue was filtered through a 2.5 cm silica plug with 3:1 hexanes:CH₂Cl₂ and the filtrate concentrated in vacuo. Purification via column chromatography (4:1 hexanes:CH₂Cl₂) afforded 9 (145 mg, 81%) as an amorphous orange-brown solid. ¹H NMR (300 MHz, CDCl₃): δ 7.79 (s, 2H), 7.62 (s, 2H), 7.48-7.39 (m, 6H), 7.26 (s, 2H), 7.22 (s, 2H), 7.06-7.00 (m, 4H), 2.71-2.43 (m, 12H), 2.01 (s, 6H), 1.98 (s, 6H), 1.87 (s, 6H), 1.67-1.53 (m, 12H), 1.26 (br s, 116H), 0.89 (t, J = 7.2 Hz, 18H). ¹³C NMR (75 MHz, CDCl₃): δ 143.41, 143.33, 141.58, 135.65, 135.37, 132.98, 132.26 (2C), 131.71 (2C), 127.61, 127.57, 126.49, 126.39, 125.78, 125.27, 125.22, 124.86, 122.79, 122.75, 122.65, 94.21, 94.18, 93.66, 93.51, 92.41, 90.84, 90.52, 90.30, 90.23, 90.17, 78.57, 77.98, 35.71, 35.70, 32.52, 32.49, 31.92, 31.01, 30.88, 29.66, 29.59, 29.48, 29.36, 29.27, 29.24, 22.69, 14.11, 4.71, 4.51, 4.40. UV-Vis (CH₂Cl₂): λmax (ε) 248 (98,900), 266 (98,100), 314 (87,000), 366 (56,000) nm. IR (neat): ν 3056, 2934, 2852, 2195 cm⁻¹. MS (Cl pos) m/z (%): 1975 (M⁺+3, 33), 1974 (M⁺+2, 37), 1972 (M⁺, 63), 962 (100); C₁₄₈H₁₉₄ (1971.50).

Tris[12]cyclyne 4. a) Using W-catalyst: A suspension of polyyne 9 (140 mg, 0.07 mmol) and (t-BuO)₅W≡C-t-Bu (100 mol%) in toluene was heated for 4 h at 80 °C under an Ar atmosphere. Concentration in vacuo and purification via Chromatotron (5:1 hexanes: CH₂Cl₂) afforded 4 (25 mg, 19%) as a bright orange solid. b) Using Mo-catalyst: Reaction of 9 (40 mg, 0.02 mmol) with EtC≡Mo[N(t-Bu)(3,5-C₆H₃Me₂)]₃ (6
mg, 0.008 mmol) and silanol-POSS (49 mg, 0.05 mmol) in 1,2,4-trichlorobenzene (5 mL) for 3 h at 75 °C and 1 torr afforded 10 mg of 4 (31%). Mp: 183-185 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.21-7.15 (m, 12H), 7.07 (s, 2H), 6.98 (dd, $J = 7.0, 1.9$ Hz, 4H), 2.53 (br s, 12H), 1.62-1.54 (m, 12H), 1.26 (br s, 116H), 0.95-0.92 (m, 18H). 13C NMR (75 MHz, CDCl$_3$): δ 144.90, 144.10, 144.05, 142.19, 134.71, 134.66, 132.49, 131.95 (2C), 128.86, 126.93, 126.75 (2C), 126.73, 126.65, 126.43, 125.89, 123.62, 123.59 (2C), 123.56, 95.36, 95.21, 95.05, 93.91, 92.74, 92.64, 91.50, 91.44, 91.13, 35.66, 31.93, 30.85, 30.42, 29.69, 29.66, 29.61, 29.56, 29.47, 29.36, 29.24, 22.69, 14.12. UV-Vis (CH$_2$Cl$_2$): λ_{max} (ε) 267 (54,000), 305 (71,300), 327 (128,000), 318 (64,700), 357 (135,700), 411 (25,200), 430 (10,500), 461 (6,800), 511 (2,700) nm. Fluorescent emission ([4] $\leq 5 \times 10^{-5}$ M in toluene or CH$_2$Cl$_2$; $\Phi_F = 0.27$; 411 nm excitation): λ_{max} 515, 557, 579 nm. IR (neat): ν 2924, 2852, 2212 cm$^{-1}$. MS (tof-SIMS, pos, Bi$_3^+$) m/z: 1811.1 (M$^{++2}$), 1810.6 (MH$^+$), 1809.1 (M$^+$); C$_{136}$H$_{176}$ (1809.38).

Tetrayne 10. Diyne 6b (110 mg, 0.27 mmol) was reacted with 1,4-dibromo-2,5-diodobenzene (62 mg, 0.13 mmol) according to General Deprotection/Cross-Coupling Procedure at 30 °C. The residue was filtered through a 2.5 cm silica plug with 2:1 hexanes:CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. Purification via column chromatography (3:1 hexanes:CH$_2$Cl$_2$) afforded 10 (103 mg, 90%) as a pale yellow solid. Mp: 109-110 °C. 1H NMR (300 MHz, CDCl$_3$): δ 7.78 (s, 2H), 7.45 (d, $J = 7.8$ Hz, 2H), 7.27 (br s, 2H), 7.09 (br d, $J = 8.1$ Hz, 2H), 2.57 (t, $J = 7.5$ Hz, 4H), 2.15 (s, 6H), 1.63-1.57 (m, 4H), 1.25 (br s, 44H), 0.88 (t, $J = 6.5$ Hz, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 144.19, 136.33, 132.05, 127.79, 126.61, 126.53, 123.15, 121.77, 121.36, 95.99, 90.32, 89.38, 78.51, 35.71, 31.93, 31.00, 29.66, 29.54, 29.44, 29.36, 29.17, 22.70, 14.14, 4.89. IR (neat): ν 2935, 2874, 2165 cm$^{-1}$. MS (CI pos) m/z (%): 976 (M$^{++2}$+THF, 43), 906 (M$^{++4}$, 13), 905 (M$^{++3}$, 27), 903 (MH$^+$, 17), 743 (100); C$_{56}$H$_{72}$Br$_2$ (902.4).

Polyyne 11. Hexayne 8 (134 mg, 0.15 mmol) was reacted with tetrayne 10 (60 mg, 0.06 mmol) according to General Deprotection/Cross-Coupling Procedure at 85 °C. The residue was filtered through a 2.5 cm silica plug with 3:2 hexanes:CH$_2$Cl$_2$ and the filtrate concentrated in vacuo. Purification via Chromatotron (3:1 hexanes:CH$_2$Cl$_2$) afforded 11 (102 mg, 65%) as a bright yellow, waxy solid. Mp: >175 °C (dec). 1H NMR (300 MHz, CDCl$_3$): δ 7.81 (s, 2H), 7.98 (s, 2H), 7.65 (s, 2H), 7.54-7.46 (m, 6H), 7.26 (br s, 6H), 7.07 (s, 2H), 6.98 (dd, $J = 7.0, 1.9$ Hz, 4H), 2.53 (br s, 12H), 1.62-1.54 (m, 12H), 1.26 (br s, 116H), 0.95-0.92 (m, 18H).
7.10-7.04 (m, 6H), 2.61 (t, J = 7.7 Hz, 8H), 2.52 (t, J = 7.9 Hz, 4H), 2.09 (s, 6H), 2.05 (s, 6H), 2.03 (s, 6H), 1.87 (s, 6H), 2.63-2.47 (m, 12H), 1.28 (br s, 132H), 0.90 (t, J = 6.9 Hz, 18H). 13C NMR (75 MHz, CDCl$_3$): δ 143.82, 143.60, 143.48, 135.81, 135.62, 135.61, 135.44, 132.35, 132.21, 132.19, 131.95, 131.83, 131.50, 127.88, 127.64, 127.53, 126.60, 126.49, 126.39, 125.91, 125.79, 125.61, 125.18, 124.92, 124.72, 122.69, 122.61, 122.32, 94.99, 94.73, 94.22, 93.66, 92.72, 92.71, 90.43, 90.35, 90.23, 90.18, 90.09 (2C), 78.67, 78.58, 78.49, 77.85, 35.72, 35.70, 31.93, 31.06, 31.05, 30.94, 29.68, 29.57, 29.47, 29.36, 29.29, 29.27, 22.69, 14.11, 4.64, 4.56, 4.37. UV-Vis (CH$_2$Cl$_2$): λ_{max} (e) 251 (117,000), 312 (72,300), 365 (59,800), 424 (36,900) nm. IR (neat): ν 2963, 2901, 2873, 2187 cm$^{-1}$. MS (Cl pos) m/z (%): 2361 (MH$^+$, 72), 2360 (M$^+$, 100); C$_{178}$H$_{222}$ (2359.74).

References
r^1 = C_{19}H_{37}\text{dec}

r^2 = \text{Dec}