New Synthetic Routes to Chain-Extended Selenium, Sulfur, and Nitrogen Analogues of the Naturally-Occurring Glucosidase Inhibitor Salacinol and their Inhibitory Activities Against Recombinant Human Maltase Glucoamylase

Hui Liu, Ravindranath Nasi, Kumarasamy Jayakanthan, Lyann Sim, Heather Heipel, David R. Rose, and B. Mario Pinto

Department of Chemistry, Simon Fraser University, Burnaby, B.C., Canada, V5A 1S6

Department of Medical Biophysics, University of Toronto and Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto, ON, Canada M5G 1L7
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>General Experimental</td>
<td>Page S3</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 17</td>
<td>Page S4</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 17</td>
<td>Page S5</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 14</td>
<td>Page S6</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 14</td>
<td>Page S7</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 19</td>
<td>Page S8</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 19</td>
<td>Page S9</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 20</td>
<td>Page S10</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 20</td>
<td>Page S11</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 15</td>
<td>Page S12</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 15</td>
<td>Page S13</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 21</td>
<td>Page S14</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 21</td>
<td>Page S15</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 24</td>
<td>Page S16</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 24</td>
<td>Page S17</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 22</td>
<td>Page S18</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 22</td>
<td>Page S19</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 25</td>
<td>Page S20</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 25</td>
<td>Page S21</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 23</td>
<td>Page S22</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 23</td>
<td>Page S23</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 26</td>
<td>Page S24</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 27</td>
<td>S25</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 27</td>
<td>S26</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 30</td>
<td>S27</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 30</td>
<td>S28</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 28</td>
<td>S29</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 28</td>
<td>S30</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 31</td>
<td>S31</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 31</td>
<td>S32</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 29</td>
<td>S33</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 29</td>
<td>S34</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 32</td>
<td>S35</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 32</td>
<td>S36</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 5</td>
<td>S37</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 5</td>
<td>S38</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 8</td>
<td>S39</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 8</td>
<td>S40</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 7</td>
<td>S41</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 7</td>
<td>S42</td>
</tr>
<tr>
<td>1H NMR Spectrum of Compound 10</td>
<td>S43</td>
</tr>
<tr>
<td>13C NMR Spectrum of Compound 10</td>
<td>S44</td>
</tr>
</tbody>
</table>
General Experimental: Optical rotations were measured at 23°C. 1H and 13C NMR spectra were recorded at 500 and 125 MHz respectively. All assignments were confirmed with the aid of two-dimensional 1H, 1H (COSYDFTP) or 1H, 13C (INVBTP) experiments using standard pulse programs. Column chromatography was performed with Silica gel 60 (230-400 mesh). MALDI mass spectra were obtained on samples dispersed in a 2,5-dihydroxybenzoic acid matrix. High resolution mass spectra were obtained by the electrospray ionization (ESI) technique, using a TOF mass spectrometer at 10000 RP.
500 MHz, CDCl$_3$, 298K
125 MHz, CDCl₃, 298 K
δ ppm (t1)

500 MHz, CDCl$_3$, 298K

![Chemical Structure](image_url)
125 MHz, CDCl₃, 298K

14

- O
- S
- O
- O
- MeO
- O
- O
- Me
- O
- O
- O
- O
- O
δ (ppm) (t1)

500 MHz, CDCl$_3$, 298K
21

500 MHz, (CD₃)₂CO, 298K
125MHz, (CD$_3$)$_2$CO, 298K
500 MHz, (CD$_3$)$_2$CO, 298K
ppm (f1)

500 MHz, (CD$_2$)$_2$CO, 298K
500 MHz, (CD$_3$)$_2$CO, 298K
ppm (t1)

500 MHz, (CD$_3$)$_2$CO, 298K

22

PMBO OPMB

PMB

OMe
500 MHz, (CD$_3$)$_2$CO, 298 K
125 MHz, (CD$_3$)$_2$CO, 298 K

Structure:

![Molecular Structure](image)
500 MHz, CD$_2$Cl$_2$, pH = 8, 298K
125 MHz, CD$_2$Cl$_2$, pH = 8.298K
500 MHz, CD$_2$Cl$_2$, pH = 8, 298K
500 MHz, CD$_3$OD, 298 K
ppm (t1)

50

100

125 MHz, CD$_2$OD, 298K
S27

500 MHz, CD3OD, 298K

30
125 MHz, CD$_3$OD, 298K
500 MHz, CD$_3$OD, 298K
ppm (t1)

3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

S

O

OBn

OH

OH

OSO$_3$

HO

31

500 MHz, D$_2$O, 298K
S_{32}

$ppm (t_1)$

$50, 60, 70, 80, 90, 100, 110, 120, 130$

125 MHz, D$_2$O, 298K

31
500 MHz, D$_2$O, pH = 8.298 K
125 MHz, D$_2$O, pH = 8, 298K
S35 ppm (t1)

3.0 4.0 5.0 6.0 7.0

N O

HO

HO

OH OB

OHOH

OSO

32

32

500 MHz, D2O, pH = 8, 298K
125 MHz, D$_2$O, pH = 8, 298K
125 MHz, D$_2$O, 298K
ppm (f1)

3.50 4.00 4.50 5.00

Se

OH

HO

HO

OH

OHOH

500 MHz, D2O, 298K
ppm (t1)

125 MHz, D$_2$O, 298K
7

500 MHz, D₂O, pH = 8.2, 298K
125 MHz, D_{2}O, pH = 8, 298K

ppm (H)
500 MHz, D$_2$O, pH = 8, 298K
ppm (t1)

55.0 60.0 65.0 70.0 75.0 80.0 85.0

N OH
HO
HOOH OH
OSO3K OH

125 MHz, D2O, pH = 8.2, 298K