SUPPORTING INFORMATION

Solution Synthesis of Nanocrystalline M-Zn ($M = \text{Pd, Au, Cu}$) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors

Robert E. Cable and Raymond E. Schaak*

Department of Chemistry, Texas A&M University, College Station, TX 77842-3012

Figure S1. TEM micrographs showing (a) core/shell nanostructure in small and large particles of Cu_5Zn_8 product formed by converting Cu nanocrystals formed at lower temperatures (the shell is likely ZnO), and (b) Cu_5Zn_8 product converted from Cu nanocrystals formed at higher temperature, which minimizes small particles. EDS data for the Cu_5Zn_8 product in (b) shows the presence of both Cu and Zn.

Figure S2. Powder XRD (top: experimental, bottom: simulated) and SAED of Cu_5Zn_8 product converted from Cu nanocrystals formed at high temperature (Fig. S1b,c). The product XRD and SAED patterns are consistent with the simulated Cu_5Zn_8 XRD pattern, and no ZnO is observed.