Supporting Information

Ring-closing Reaction of Allenic/propargylic Anions Generated by Base Treatment of Sulfonyllallenes

Shinji Kitagaki, Satoshi Teramoto, and Chisato Mukai*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology,
Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Table of Contents
General
Typical procedure for the preparation of tosylates 6
Characterization data for compounds 6a,b
Typical procedure for the preparation of iodides 6
Characterization data for compounds 6b’,c-e
Typical procedure for the preparation of aldehydes 8
Characterization data for compounds 8a,b
Procedure for the preparation of allene 11
Procedure for the preparation of allene 13a
Procedure for the preparation of allene 13b
Procedure for the preparation of allene 13c
General procedure for the ring-closing reaction
Characterization data for compounds 7a-e, 9a,b
Characterization data for compounds 10,12,14a,b
Stereochemical assignments of 9a
References
1H and 13C NMR spectra for compounds 6~14
General. Melting points are uncorrected. IR spectra were measured in CHCl₃. ¹H NMR spectra were taken in CDCl₃, CHCl₃ (7.26 ppm) for silyl compounds and tetramethylsilane (0.00 ppm) for compounds without a silyl group were used as internal standards. ¹³C NMR spectra were recorded in CDCl₃ with CDCl₃ (77.00 ppm) as an internal standard. All reactions were carried out under a nitrogen atmosphere. Silica gel (silica gel 60, 230-400 mesh) was used for chromatography. Organic extracts were dried over anhydrous Na₂SO₄.

Typical Procedure for Preparation of (Phenylsulfonyl)alkadienyl p-toluenesulfonate: Preparation of 3-(Phenylsulfonyl)penta-3,4-dien-1-ol p-toluenesulfonate (6a). To a solution of 3-(phenylsulfonyl)penta-3,4-dien-1-ol¹ (51.2 mg, 0.229 mmol) in CH₂Cl₂ (2.3 mL) were added Et₃N (0.19 mL, 1.4 mmol) and TsCl (131 mg, 0.686 mmol) at 0 °C. After the mixture was stirred at room temperature for 10 h, the reaction was quenched by addition of saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane–AcOEt (2:1) afforded 6a (75.3 mg, 87%) as a colorless oil; IR 1971, 1934 cm⁻¹; ¹H NMR δ 7.87–7.83 (2H, m), 7.74–7.71 (2H, m), 7.68–7.52 (3H, m), 7.35 (2H, d, J = 8.3 Hz), 5.36 (2H, t, J = 3.0 Hz), 4.12 (2H, t, J = 6.7 Hz), 2.61 (2H, tt, J = 6.7, 3.0 Hz), 2.46 (3H, s); ¹³C NMR δ 207.9, 145.0, 139.4, 133.7, 132.6, 129.8, 129.1, 128.0, 127.8, 108.4, 85.1, 67.0, 26.8, 21.6; MS m/z 378 (M⁺, 6.0); HRMS calcd for C₁₈H₁₈O₅S₂ 378.0596, found 378.0602.

6-(Phenylsulfonyl)octa-6,7-dienyl p-toluenesulfonate (6b). According to the above procedure, 6b (100 mg, 91%) was obtained from 6-(phenylsulfonyl)octa-6,7-dien-1-ol¹ (69.6 mg, 0.262 mmol) as a colorless oil; IR 1969, 1940 cm⁻¹; ¹H NMR δ 7.88 (2H, d, J = 8.3 Hz), 7.77 (2H, d, J = 8.3 Hz), 7.63–7.61 (1H, m), 7.56–7.53 (2H, m), 7.34 (2H, d, J = 8.3 Hz), 5.34 (2H, t, J = 3.4 Hz), 3.97 (2H, t, J = 6.3 Hz), 2.45 (3H, s), 2.20 (2H, tt, J = 6.8, 3.4 Hz), 1.59 (2H, quin, J = 6.3 Hz), 1.41 (2H, quin, J = 6.3 Hz), 1.33–1.28 (2H, m); ¹³C NMR δ 207.6, 144.7, 140.0, 133.5, 133.0, 129.8, 129.1, 128.0, 127.8, 112.9, 84.5, 70.1, 28.4, 26.7, 26.4, 24.5, 21.6; MS m/z 420 (M⁺, 92.3); HRMS calcd for C₂₁H₂₆O₅S₂ 420.1065, found 420.1060.

Typical Procedure for Preparation of Iodo(phenylsulfonyl)alkadiene: Preparation of 8-Iodo-3-(phenylsulfonyl)octa-1,2-diene (6b’). To a solution of 6b (164 mg, 0.390 mmol) in acetone (3.9 mL) was added NaI (117 mg, 0.780 mmol), and the mixture was refluxed for 1 h. The reaction mixture was cooled to room temperature, diluted with water, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness.
Chromatography of the residue with hexane–AcOEt (5:1) afforded 6b’ (125 mg, 85%) as a colorless oil; IR 1969, 1940 cm⁻¹; ¹H NMR δ 7.91–7.88 (2H, m), 7.67–7.52 (3H, m), 5.38 (2H, t, J = 3.5 Hz), 3.13 (2H, t, J = 6.9 Hz), 2.28–2.22 (2H, m), 1.75 (2H, quin, J = 6.9 Hz), 1.52–1.31 (4H, m); ¹³C NMR δ 207.6, 140.0, 133.4, 129.0, 128.0, 113.0, 84.5, 32.8, 29.4, 26.4, 26.2, 6.6; MS m/z 376 (M⁺, 24.6); HRMS calcld for C₁₄H₁₇O₂IS 375.9994, found 376.0004.

7-Iodo-3-(phenylsulfonyl)hepta-1,2-diene (6c). According to the above procedure, 6c (90.0 mg, 80% for 2 steps) was obtained from 5-(phenylsulfonyl)hepta-5,6-dien-1-ol¹ (78.5 mg, 0.311 mmol) as a colorless oil; IR 1969, 1938 cm⁻¹; ¹H NMR δ 7.91–7.87 (2H, m), 7.67–7.52 (3H, m), 5.40 (2H, t, J = 3.5 Hz), 3.11 (2H, t, J = 6.9 Hz), 2.27 (2H, tt, J = 6.9, 3.5 Hz), 1.79 (2H, quin, J = 6.9 Hz), 1.56 (2H, quin, J = 6.9 Hz); ¹³C NMR δ 207.5, 139.9, 133.5, 129.0, 127.9, 112.6, 84.6, 32.2, 28.0, 25.4, 5.8; MS m/z 361 (M⁺, 6.7); HRMS calcld for C₁₃H₁₅O₂IS 361.9838, found 361.9842.

6-Iodo-3-(phenylsulfonyl)hexa-1,2-diene (6d). According to the above procedure, 6d (70.4 mg, 80% for 2 steps) was obtained from 4-(phenylsulfonyl)hexa-4,5-dien-1-ol¹ (60.2 mg, 0.253 mmol) as a colorless oil; IR 1969, 1938 cm⁻¹; ¹H NMR δ 7.87–7.84 (2H, m), 7.63–7.48 (3H, m), 5.36 (2H, t, J = 3.3 Hz), 3.09 (2H, t, J = 6.8 Hz), 2.33 (2H, tt, J = 6.8, 3.3 Hz), 1.92 (2H, quin, J = 6.9 Hz); ¹³C NMR δ 207.5, 139.8, 133.6, 129.1, 128.0, 111.7, 84.7, 31.0, 27.7, 4.4; MS m/z 347 (M⁺, 4.0); HRMS calcld for C₁₃H₁₃O₂IS 347.9681, found 347.9694.

9-Iodo-3-(phenylsulfonyl)nona-1,2-diene (6e). According to the above procedure, 6e (20.9 mg, 82% for 2 steps) was obtained from 7-(phenylsulfonyl)nona-7,8-dien-1-ol (18.3 mg, 6.54 x 10⁻² mmol) as a colorless oil; IR 1969, 1942 cm⁻¹; ¹H NMR δ 7.91–7.88 (2H, m), 7.67–7.52 (3H, m), 5.37 (2H, t, J = 3.4 Hz), 3.14 (2H, t, J = 6.9 Hz), 2.23 (2H, tt, J = 6.9, 3.4 Hz), 1.77 (2H, quin, J = 6.9 Hz), 1.47–1.23 (6H, m); ¹³C NMR δ 207.7, 140.1, 133.4, 129.0, 128.0, 113.2, 84.4, 33.2, 30.0, 27.6, 27.1, 26.5, 6.9; MS m/z 390 (M⁺, 38.9); HRMS calcld for C₁₃H₁₉O₂IS 390.0151, found 390.0167.

Typical Procedure for Preparation of (Phenylsulfonyl)alkadienal 8: Preparation of 6-(Phenylsulfonyl)octa-6,7-dien-1-ol (8a). To a solution of 6-(phenylsulfonyl)octa-6,7-dien-1-ol (106 mg, 0.400 mmol) in CH₂Cl₂ (4.0 mL) was added Dess-Martin periodinane (339 mg, 0.800 mmol) at 0 °C. After the mixture was stirred at that temperature for 30 min, the reaction was quenched with saturated aqueous Na₂S₂O₃ and NaHCO₃, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane–AcOEt (2:1) afforded 8a (100 mg, 94%) as a colorless oil; IR 1971, 1938, 1722 cm⁻¹; ¹H NMR δ 9.72 (1H, t, J = 1.5 Hz), 7.91–7.88 (2H, m), 7.67–7.52 (3H, m), 5.37 (2H, t, J = 3.5 Hz), 2.40 (2H, td, J = 7.1, 1.5 Hz), 2.27 (2H, tt, J = 7.1,
3.5 Hz), 1.67–1.43 (4H, m); 13C NMR δ 207.6, 201.9, 140.0, 133.5, 129.1, 128.1, 112.9, 84.5, 43.3, 26.8, 26.4, 21.1; MS m/z 264 (M*, 20.2); HRMS calcd for C$_{14}$H$_{10}$O$_3$S 264.0820, found 264.0818.

5-(Phenylsulfonyl)hepta-5,6-dien-1-ol (8b). According to the above procedure, 8b (27.2 mg, 80%) was obtained from 5-(phenylsulfonyl)hepta-5,6-dien-1-ol (34.0 mg, 0.135 mmol) as a colorless oil; IR 1971, 1940, 1724 cm$^{-1}$; 1H NMR δ 9.71 (1H, s), 7.89 (2H, d, J = 7.6 Hz), 7.64 (1H, t, J = 7.3 Hz), 7.55 (2H, t, J = 7.3 Hz), 5.40 (2H, t, J = 3.3 Hz), 2.46 (2H, t, J = 7.1 Hz), 2.29 (2H, t, J = 7.1, 3.3 Hz), 1.80 (2H, quin, J = 7.1 Hz); 13C NMR δ 207.6, 201.2, 139.9, 133.6, 129.1, 128.1, 112.6, 84.8, 42.6, 26.0, 19.9; MS m/z 250 (M*, 30.5); HRMS calcd for C$_{13}$H$_{14}$O$_3$S 250.0664, found 250.0667.

Methyl 8-(phenylsulfonyl)deca-2,8,9-trienoate (11). To a solution of 8-((tert-butylidimethylsiloxy)oct-2-yn-1-ol (i)1 (430 mg, 1.68 mmol) in THF (15 mL) were added iPr$_2$NEt (0.90 mL, 5.0 mmol) and a solution of PhSOCl (403 mg, 2.52 mmol) in THF (2 mL) at –78 °C. After the mixture was stirred at that temperature for 1 h, the reaction was quenched by addition of water, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (5:1) to afford the crude sulfinate (673 mg) as a colorless oil. The sulfinate was dissolved in MeOH (17 mL), and PPTS (42.2 mg, 0.168 mmol) was added at room temperature. After being stirred for 4 h, the mixture was concentrated and the residue was partitioned between AcOEt and water. The aqueous layer was extracted with AcOEt, and the combined extracts were washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane–AcOEt (1:1) afforded 8-(phenylsulfonyloxy)oct-6-yn-1-ol (ii) (418 mg, 94% for 2 steps) as a colorless oil; IR 3628, 3481, 2235 cm$^{-1}$; 1H NMR δ 7.75–7.73 (2H, m), 7.58–7.52 (3H, m), 4.62 (1H, dt, J = 15.1, 2.2 Hz), 4.34 (1H, dt, J = 15.1, 2.2 Hz), 3.63 (2H, t, J = 6.6 Hz), 2.20 (2H, t, J = 6.8, 2.2 Hz), 1.91 (1H, s), 1.57–1.42 (6H, m); 13C NMR δ 144.2, 132.3, 129.0, 125.2, 89.2, 74.0, 62.4, 53.1, 32.0, 27.9, 24.9, 18.6; MS m/z 266 (M*, 11.9); HRMS calcd for C$_{14}$H$_{15}$O$_3$S 266.0977, found 266.0981.

To a solution of ii (196 mg, 0.737 mmol) in AcOEt (7.4 mL) was added IBX (619 mg, 2.21 mmol) at room temperature, and the mixture was heated at 80 °C for 1 h. The reaction mixture was cooled.
to room temperature and filtered. The filtrate was concentrated, and the residue was passed through a short pad of silica gel with hexane–AcOEt (3:2) to afford the crude aldehyde (150 mg) as a colorless oil. To a solution of trimethyl phosphonoacetate (148 mg, 0.811 mmol) in THF (7.4 mL) was gradually added nBuLi (1.40 M in hexane, 0.53 mL, 0.74 mmol) at 0 °C, and the mixture was stirred at that temperature for 30 min. A solution of the crude aldehyde (150 mg) in THF (3.7 mL) was added to the mixture, and stirring was continued for 30 min. The reaction was quenched by addition of water, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane–AcOEt (3:1) afforded methyl (E)- and (Z)-10-(phenylsulfanyloxy)-dec-2-en-8-ynoate (81.9 mg, 35% and 49.1 mg, 21%).

To a solution of (E)-ester (70.0 mg, 0.218 mmol) in toluene (2.2 mL) was added [RhCl(CO)₂]₂ (4.2 mg, 0.011 mmol) at room temperature, and the mixture was stirred at that temperature for 2 h.² Toluene was evaporated off, and the residue was chromatographed with hexane–AcOEt (2:1) to afford (E)-11 (38.5 mg, 55%) as a colorless oil; IR 1971, 1940, 1717, 1659 cm⁻¹; ¹H NMR δ 7.91–7.87 (2H, m), 7.67–7.52 (3H, m), 6.88 (1H, dt, J = 15.6, 6.9 Hz), 5.77 (1H, d, J = 15.6 Hz), 5.37 (2H, t, J = 3.4 Hz), 3.72 (3H, s), 2.25–2.23 (2H, m), 2.18–2.11 (2H, m), 1.46–1.44 (4H, m); ¹³C NMR δ 207.6, 166.9, 148.7, 140.1, 133.5, 129.0, 128.0, 121.2, 113.0, 84.4, 51.4, 31.6, 27.0, 26.7, 26.3; MS m/z 320 (M⁺, 39.1); HRMS calcd for C₁₇H₂₀O₂S 320.1082, found 320.1087.

According to the above procedure, (Z)-11 (18.6 mg, 45%) was obtained from (Z)-10-(phenylsulfinyloxy)-dec-2-en-8-ynoate (41.6 mg, 0.130 mmol) as a colorless oil; IR 1971, 1940, 1717, 1645 cm⁻¹; ¹H NMR δ 7.89 (2H, d, J = 7.4 Hz), 7.63 (1H, t, J = 7.4 Hz), 7.54 (2H, t, J = 7.4 Hz), 6.14 (1H, dt, J = 11.5, 7.4 Hz), 5.76 (1H, d, J = 11.5 Hz), 5.36 (2H, t, J = 3.5 Hz), 3.69 (3H, s), 2.60 (2H, q, J = 6.8 Hz), 2.26–2.22 (2H, m), 1.53–1.40 (4H, m); ¹³C NMR δ 207.7, 166.7, 149.9, 140.1, 133.4, 129.0, 128.1, 119.6, 113.1, 84.4, 51.0, 28.4, 28.1, 27.0, 26.4; MS m/z 320 (M⁺, 1.3); HRMS calcd for C₁₇H₂₀O₂S 320.1082, found 320.1089.
6-Iodo-1-phenyl-2-vinylidenehexan-1-one (13a). To a solution of 7-(tert-butyldimethylsiloxy)hept-2-yn-1-ol (iii)\(^1\) (410 mg, 1.69 mmol) in \(\text{CH}_2\text{Cl}_2\) (17 mL) were added CBr\(_4\) (674 mg, 2.03 mmol) and PPh\(_3\) (487 mg, 1.86 mmol) at 0 °C, and the mixture was stirred at that temperature for 30 min. The reaction was quenched by addition of water, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (50:1) to afford the crude bromide (470 mg) as a pale yellow oil. The bromide was dissolved in DMF (2.0 mL), and SnCl\(_2\) (417 mg, 2.20 mmol) and NaI (304 mg, 2.03 mmol) were added at room temperature.\(^3\) After being stirred for 1 h, the reaction mixture was cooled to 0 °C, and a solution of benzaldehyde (197 mg, 1.86 mmol) in DMF (1.0 mL) was added. After stirring for 6 h, the reaction was quenched by addition of water, and the mixture was extracted with Et\(_2\)O. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (10:1) to afford the crude allenyl alcohol (74.0 mg) as a pale yellow oil. The allenyl alcohol was dissolved in DMSO (2.4 mL), and IBX (197 mg, 0.705 mmol) was added at room temperature. After being stirred for 3 h, the reaction mixture was diluted with water and extracted with Et\(_2\)O. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane–AcOEt (8:1) afforded 6-(tert-butyldimethylsiloxy)-1-phenyl-2-vinylidenehexan-1-one (iv) (68.5 mg, 12% for 3 steps) as a colorless oil; IR 1960, 1931, 1649 cm\(^{-1}\); \(^1\)H NMR δ 7.76 (2H, d, \(J = 7.3\) Hz), 7.50 (1H, t, \(J = 7.3\) Hz), 7.38 (2H, t, \(J = 7.3\) Hz), 5.05 (2H, t, \(J = 2.6\) Hz), 3.64 (2H, t, \(J = 6.0\) Hz), 2.45–2.42 (2H, m), 1.66–1.54 (4H, m), 0.89 (9H, s), 0.05 (6H, s); \(^1\)C NMR δ 217.0, 194.8, 138.4, 132.0, 129.0, 127.8, 106.8, 79.5, 62.9, 32.4, 27.6, 26.0, 24.2, 18.3, –5.3; MS \(m/z\) 330 (M\(^+\), 14.5); HRMS calcd for \(\text{C}_{20}\text{H}_{30}\text{O}_2\text{Si}\) 330.2015, found 330.2007.

To a solution of iv (73.0 mg, 0.221 mmol) in MeOH (2.2 mL) was added PPTS (5.6 mg, 2.2 \(\times\) 10\(^{2}\)...
mmol) at room temperature, and the mixture was stirred for 5 h. The mixture was concentrated, and the residue was partitioned between AcOEt and water. The aqueous layer was extracted with AcOEt, and the combined extracts were washed with water and brine, dried, and concentrated to dryness. The residue was dissolved in CH₂Cl₂ (2.2 mL), and Et₃N (0.19 mL, 1.4 mmol) and TsCl (126 mg, 0.663 mmol) were added at 0 °C. After the mixture was stirred at room temperature for 10 h, the reaction was quenched by addition of saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (5:1) to afford the crude tosylate (70.0 mg) as a colorless oil. To a solution of the tosylate in acetone (2.2 mL) was added NaI (66.3 mg, 0.442 mmol), and the mixture was refluxed for 1 h. The reaction mixture was cooled to room temperature, diluted with water, and extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane–AcOEt (10:1) afforded 13a (48.2 mg, 67% for 3 steps) as a colorless oil; IR 1960, 1931, 1649 cm⁻¹; ¹H NMR δ 7.77–7.73 (2H, m), 7.53–7.48 (1H, m), 7.42–7.36 (2H, m), 5.10 (2H, t, J = 2.8 Hz), 3.23 (2H, t, J = 6.9 Hz), 2.43 (2H, tt, J = 7.6, 2.8 Hz), 1.93 (2H, quin, J = 6.9 Hz), 1.64 (2H, quin, J = 6.9 Hz); ¹³C NMR δ 216.9, 194.6, 138.2, 132.1, 129.0, 127.9, 106.3, 79.8, 33.0, 28.7, 26.7, 6.5; MS m/z 326 (M⁺, 16.1); HRMS calcd for C₁₄H₁₅OI 326.0168, found 326.0165.

Methyl 6-iodo-2-vinylidenehexanoate (13b). To a solution of iii (196 mg, 0.810 mmol) in CH₂Cl₂ (8.1 mL) were added pyridine (0.20 mL, 2.4 mmol) and ClCO₂Me (0.07 mL, 0.9 mmol) at 0 °C. After the mixture was stirred at room temperature for 12 h, the reaction was quenched by addition of saturated aqueous NaHCO₃, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (5:1) to afford the crude carbonate (228 mg) as a colorless oil. To a solution of the crude carbonate in MeOH (1.4 mL) were added Pd(OAc)₂ (8.2 mg, 3.7 x 10⁻² mmol) and PPh₃ (38.4 mg, 0.147 mmol). After the mixture was stirred at 50 °C under 10 atm of CO for 10 h,¹ the reaction mixture was filtered. The filtrate was concentrated to dryness, and the residue was chromatographed with hexane–AcOEt (20:1) to afford the allene v (109 mg, 49% for 2 steps) as a colorless oil; IR 1965, 1936, 1713 cm⁻¹; ¹H NMR δ 5.13 (2H, t, J = 3.0 Hz), 3.74 (3H, s), 3.61 (2H, t, J = 6.2 Hz), 2.28–2.20 (2H, m), 1.58–1.47 (4H, m), 0.88 (9H, s), 0.03 (6H, s); ¹³C NMR δ 213.9, 167.7, 100.0, 79.4, 62.9, 52.2, 32.2, 27.7, 25.9, 24.2, 18.3, –5.3; MS m/z 284 (M⁺, 5.6); HRMS calcd for C₁₄H₂₈O₃Si 284.1806, found 284.1806.

According to the procedure for preparation of 13a from iv, 13b (85.5 mg, 83% for 3 steps) was obtained from v (105 mg, 0.370 mmol) as a colorless oil; IR 1965, 1936, 1713 cm⁻¹; ¹H NMR δ
5.17 (2H, t, J = 3.0 Hz), 3.75 (3H, s), 3.20 (2H, t, J = 6.9 Hz), 2.27 (2H, tt, J = 7.4, 3.0 Hz), 1.88 (2H, quin, J = 6.9 Hz), 1.58 (2H, quin, J = 7.4 Hz); \(^{13}\)C NMR \(\delta\) 213.7, 167.4, 99.4, 79.3, 52.2, 32.7, 28.7, 26.9, 6.3; MS \(m/z\) 280 (M\(^+\), 11.1); HRMS calcd for C\(_{9}\)H\(_{15}\)O\(_2\)I 279.9961, found 279.9965.

7-Iodo-3-(phenylmethyl)hepta-1,2-diene (13c). To a solution of \textit{iii} (850 mg, 3.51 mmol) in CH\(_2\)Cl\(_2\) (17 mL) were added Et\(_2\)N (1.00 mL, 7.1 mmol) and MsCl (0.41 mL, 5.3 mmol) at 0 °C. After the mixture was stirred at that temperature for 10 min, the reaction was quenched by addition of saturated aqueous NaHCO\(_3\), and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (3:1) to afford the crude mesylate (914 mg) as a colorless oil. To a solution of CuBr (316 mg, 2.20 mmol) and LiBr (191 mg, 2.20 mmol) in THF (4.0 mL) was added BnMgCl (1.07 M in THF, 2.06 mL, 2.20 mmol) at –60 °C, and the mixture was stirred at that temperature for 30 min. A solution of the crude mesylate (588 mg) in THF (2.0 mL) was added dropwise to the mixture, which was stirred at that temperature for 15 min and at room temperature for 2 h. The reaction was quenched by addition of saturated aqueous NH\(_4\)Cl, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was chromatographed with hexane–AcOEt (50:1) to afford the allene \textit{vi} (380 mg, 53% for 2 steps) as a colorless oil; IR 1958 cm\(^{-1}\); \(^1\)H NMR \(\delta\) 7.31–7.19 (5H, m), 4.66 (2H, tt, J = 3.3, 2.5 Hz), 3.57 (2H, t, J = 6.2 Hz), 3.29 (2H, t, J = 2.5 Hz), 1.90 (2H, tt, J = 6.9, 3.3 Hz), 1.53–1.42 (4H, m), 0.88 (9H, s), 0.03 (6H, s); \(^{13}\)C NMR \(\delta\) 206.7, 139.7, 128.8, 128.2, 126.1, 102.6, 75.3, 63.0, 39.5, 32.3, 30.8, 26.0, 23.7, 18.4, –5.3; MS \(m/z\) 316 (M\(^+\), 43.4); HRMS calcd for C\(_{20}\)H\(_{32}\)OSi 316.2223, found 316.2232.

According to the procedure for preparation of 13a from \textit{iv}, 13c (214 mg, 70% for 3 steps) was obtained from \textit{vi} (310 mg, 0.981 mmol) as a colorless oil; IR 1958 cm\(^{-1}\); \(^1\)H NMR \(\delta\) 7.32–7.18 (5H, m), 4.69 (2H, tt, J = 3.3, 2.5 Hz), 3.29 (2H, t, J = 2.5 Hz), 3.14 (2H, t, J = 7.0 Hz), 1.90 (2H, tt, J = 7.0, 3.3 Hz), 1.81 (2H, quin, J = 7.0 Hz) 1.57–1.47 (2H, m); \(^{13}\)C NMR \(\delta\) 206.6, 139.4, 128.9, 128.2, 126.2, 102.0, 75.6, 39.5, 32.9, 29.8, 28.1, 6.8; MS \(m/z\) 312 (M\(^+\), 27.5); HRMS calcd for C\(_{14}\)H\(_{17}\)I 312.0375, found 312.0368.

General procedure for ring-closing reaction. To a solution of allene (0.1 mmol) in solvent (1 mL) was added base (0.2 mmol). After being stirred for 30 min, the reaction mixture was quenched by addition of water and extracted with Et\(_2\)O. The extract was washed with water and brine, dried and concentrated to dryness. The residue was chromatographed with hexane–AcOEt.

1-Ethynyl-1-(phenylsulfonyl)cyclopropane (7a). Colorless needles: m.p. 92.5–93 °C (hexane): IR 3306 cm\(^{-1}\); \(^1\)H NMR \(\delta\) 7.98–7.95 (2H, m), 7.72–7.55 (3H, m), 2.22 (1H, s), 1.84 (2H, dd, J = 7.4,
4.3 Hz), 1.40 (2H, dd, J = 7.4, 4.3 Hz); 13C NMR δ 138.0, 133.9, 129.0, 128.9, 78.9, 71.9, 35.0, 16.3; MS m/z 206 (M+, 78.9). Anal. Calcd for C$_{11}$H$_{10}$O$_2$S: C, 64.05; H, 4.89. Found: C, 64.00; H, 4.93.

1-Ethynyl-1-(phenylsulfonyl)cyclohexane (7b). Colorless needles: m.p. 138.5–139 °C (hexane): IR 3306 cm$^{-1}$; 1H NMR δ 8.00–7.95 (2H, m), 7.71–7.52 (3H, m), 2.51 (1H, s), 1.96–1.15 (10H, m); 13C NMR δ 134.8, 133.9, 131.0, 128.4, 80.1, 77.4, 64.5, 30.4, 24.7, 22.2; MS m/z 248 (M+, 69.3); HRMS calcd for C$_{14}$H$_{16}$O$_2$S 248.0871, found 248.0878.

1-Ethynyl-1-(phenylsulfonyl)cyclopentane (7c). Colorless needles: m.p. 126.5–127.5 °C (hexane): IR 3306 cm$^{-1}$; 1H NMR δ 8.04–7.99 (2H, m), 7.71–7.64 (1H, m), 7.59–7.52 (2H, m), 2.56–2.45 (2H, m), 2.47 (1H, s), 2.06–1.83 (6H, m); 13C NMR δ 136.4, 133.9, 130.4, 128.5, 82.8, 75.1, 67.9, 36.2, 25.2; MS m/z 234 (M+, 21.2). Anal. Calcd for C$_{14}$H$_{14}$O$_2$S: C, 66.64; H, 6.02. Found: C, 66.21; H, 5.99.

1-Ethynyl-1-(phenylsulfonyl)cyclobutane (7d). White solid: IR 3306 cm$^{-1}$; 1H NMR δ 7.98–7.94 (2H, m), 7.70–7.64 (1H, m), 7.58–7.53 (2H, m), 3.06–2.95 (2H, m), 2.56 (1H, s), 2.39–2.08 (4H, m); 13C NMR δ 135.5, 134.0, 130.1, 128.7, 81.4, 76.2, 59.6, 30.5, 15.6; MS m/z 220 (M+, 27.9); HRMS calcd for C$_{12}$H$_{12}$O$_2$S 220.0558, found 220.0560.

1-Ethynyl-1-(phenylsulfonyl)cycloheptane (7e). Colorless needles: m.p. 83–84 °C (hexane): IR 3304 cm$^{-1}$; 1H NMR δ 7.99 (2H, d, J = 8.1 Hz), 7.67 (1H, t, J = 7.6 Hz), 7.55 (2H, t, J = 7.6 Hz), 2.52 (1H, s), 2.17–2.07 (4H, m), 1.81–1.55 (8H, m); 13C NMR δ 135.3, 133.9, 131.2, 128.4, 81.5, 76.7, 67.1, 33.7, 27.6, 23.1; MS m/z 262 (M+, 7.7). Anal. Calcd for C$_{15}$H$_{14}$O$_2$S: C, 68.67; H, 6.92. Found: C, 68.26; H, 6.92.

(1R*,2R*)-2-Ethynyl-2-(phenylsulfonyl)cyclohexan-1-ol (cis-9a). Colorless needles: IR 3529, 3304 cm$^{-1}$; 1H NMR δ 8.00–7.98 (2H, m), 7.71–7.68 (1H, m), 7.57 (2H, t, J = 7.6 Hz), 4.28 (1H, dt, J = 11.0, 3.2 Hz), 3.49 (1H, d, J = 3.2 Hz), 2.58 (1H, s), 2.03–1.99 (1H, m), 1.83–1.25 (7H, m); 13C NMR δ 134.9, 134.3, 130.9, 128.5, 79.3, 76.9, 70.1, 69.8, 31.7, 31.5, 23.5, 21.7; MS m/z 264 (M+, 4.7). Anal. Calcd for C$_{14}$H$_{16}$O$_3$S: C, 63.61; H, 6.10. Found: C, 63.30; H, 6.07.

(1R*,2S*)-2-Ethynyl-2-(phenylsulfonyl)cyclohexan-1-ol (trans-9a). Colorless needles: IR 3524, 3304 cm$^{-1}$; 1H NMR δ 7.99–7.96 (2H, m), 7.74–7.68 (1H, m), 7.57 (2H, t, J = 7.4 Hz), 4.23 (1H, brs), 3.97 (1H, brs), 2.55 (1H, s), 2.41 (1H, td, J = 12.2, 3.5 Hz), 1.89–1.44 (7H, m); 13C NMR δ 134.4, 134.3, 130.8, 128.6, 79.5, 79.0, 68.2, 66.9, 29.5, 24.5, 21.9, 18.0; MS m/z 264 (M+, 3.6). Anal. Calcd for C$_{14}$H$_{16}$O$_3$S: C, 63.61; H, 6.10. Found: C, 63.46; H, 6.08.

2-Ethynyl-2-(phenylsulfonyl)cyclopentan-1-ol (9b). Colorless needles: IR 3566, 3304 cm$^{-1}$; 1H NMR δ 8.00–7.98 (2H, m), 7.71–7.67 (1H, m), 7.59–7.56 (2H, m), 4.79 (1H, td, J = 7.6, 5.4 Hz), 2.61 (1H, s), 2.55–2.49 (1H, m), 2.38 (1H, d, J = 5.4 Hz), 2.26–2.22 (1H, m), 2.08–2.02 (1H, m), 1.90–1.74 (3H, m); 13C NMR δ 136.0, 134.2, 130.3, 128.7, 79.2, 78.1, 75.1, 71.9, 34.2, 32.6, 19.6;
MS m/z 250 (M⁺, 86.9). Anal. Calcd for C_{13}H_{14}O_{3}S: C, 62.38; H, 5.64. Found: C, 62.13; H, 5.62.

2-Methyl-3-(phenylsulfonyl)cyclopent-1-enecarbaldehyde (10). A pale yellow oil: IR 1672, 1636 cm⁻¹; ¹H NMR δ 10.03 (1H, s), 7.88–7.86 (2H, m), 7.69–7.66 (1H, m), 7.57–7.54 (2H, m), 4.28 (1H, d, J = 9.5 Hz), 2.41 (3H, s), 2.41–2.36 (1H, m), 2.31–2.26 (1H, m), 2.16–2.01 (2H, m); ¹³C NMR δ 187.7, 150.5, 144.4, 137.3, 134.2, 129.2, 128.8, 77.4, 28.4, 25.1, 14.2; MS m/z 250 (M⁺, 74.4); HRMS calcd for C_{13}H_{14}O_{3}S 250.0664, found 250.0669.

Methyl 2-ethynyl-2-(phenylsulfonyl)cyclohexanecacetate (12). A 5:1~30:1 mixture of cis-12 and trans-12 was obtained as a white solid: 3304, 1732 cm⁻¹; ¹H NMR data for cis-12: δ 7.96 (2H, d, J = 7.9 Hz), 7.67 (1H, t, J = 7.9 Hz), 7.56 (2H, t, J = 7.9 Hz), 3.70 (3H, s), 3.60 (1H, dd, J = 16.5, 3.4 Hz), 2.68 (1H, tt, J = 11.0, 3.4 Hz), 2.64 (1H, s), 2.39 (1H, dd, J = 16.5, 11.0 Hz), 1.85–1.83 (1H, m), 1.75 (1H, td, J = 12.8, 3.4 Hz), 1.65–1.54 (3H, m), 1.50–1.32 (2H, m), 1.27–1.19 (1H, m); ¹³C NMR data for cis-12: δ 172.6, 135.9, 134.0, 130.7, 128.6, 78.8, 77.7, 67.5, 51.6, 37.6, 36.7, 34.4, 29.9, 24.6, 22.3; characteristic NMR data for trans-12: ¹H NMR δ 3.36 (1H, d, J = 14.6 Hz), 2.81–2.77 (1H, m), 2.51 (1H, s), 2.09–2.04 (1H, m); ¹³C NMR δ 130.9, 128.4, 81.6, 78.2, 66.6, 51.7, 33.3, 27.1, 21.7, 20.1; MS m/z 320 (M⁺, 27.5); HRMS calcd for C_{17}H₂₂O₂S 320.1082, found 320.1087.

1-Ethynylcyclopentyl phenyl ketone (14a). A colorless oil: IR 3306, 2110, 1680 cm⁻¹; ¹H NMR δ 8.24–8.21 (2H, m), 7.57–7.41 (3H, m), 2.45–2.35 (2H, m), 2.40 (1H, s), 2.22–2.13 (2H, m), 1.95–1.80 (2H, m), 1.75–1.65 (2H, m); ¹³C NMR δ 197.2, 134.8, 132.7, 130.0, 128.0, 88.2, 72.8, 51.6, 39.0, 25.1; MS m/z 198 (M⁺, 66.7); HRMS calcd for C_{19}H_{18}O₂ 198.1045, found 198.1047.

Methyl 1-ethynylcyclopentane-carboxylate (14b). A colorless oil: IR 3306, 2116, 1732 cm⁻¹; ¹H NMR δ 3.77 (3H, s), 2.30 (1H, s), 2.24–2.18 (2H, m), 2.08–2.03 (2H, m), 1.87–1.73 (4H, m); ¹³C NMR δ 173.7, 86.0, 70.3, 52.8, 47.9, 39.2, 24.7; MS m/z 152 (M⁺, 22.8); HRMS calcd for C_{9}H_{12}O₂ 152.0837, found 152.0844.

Stereochemical Assignments of 9a.

Transformation of 9a to 2-(Phenylsulfonyl)-2-ethynylcyclohexyl acetate. To a solution of cis-
9a (15.3 mg, 5.78 x 10^{-2} mmol) in pyridine (0.60 mL) were added Ac₂O (0.01 mL, 0.1 mmol) and 4-DMAP (1.4 mg, 1.2 x 10^{-2} mmol) at room temperature, and the mixture was stirred for 24 h. The reaction was quenched by addition of water, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (3:2) to afford the crude acetate (16.0 mg) as a colorless oil. The acetate was dissolved in MeOH (0.6 mL), and Lindlar catalyst (12.3 mg, 0.116 mmol) was added. After being stirred under H₂ atmosphere for 80 h, the reaction mixture was filtered, and the filtrate was concentrated to dryness. The residue was chromatographed with hexane–AcOEt (2:1) to afford (1R*,2S*)-2-(phenylsulfonyl)-2-ethenylcyclohexyl acetate (9.8 mg, 55% for 2 steps) as a white solid; IR 1738 cm⁻¹; ¹H NMR (C₆D₆) δ 7.80 (2H, dd, J = 7.7, 1.5 Hz), 6.93–6.85 (3H, m), 6.05 (1H, dd, J = 18.0, 11.0 Hz), 5.75 (1H, dd, J = 11.2, 4.3 Hz), 5.32 (1H, d, J = 11.0 Hz), 5.18 (1H, d, J = 18.0 Hz), 2.10–2.03 (1H, m), 1.88–1.84 (2H, m), 1.54 (3H, s), 1.18–0.90 (5H, m); ¹³C NMR δ 169.4, 137.6, 133.4, 130.7, 129.2, 128.4, 124.1, 72.4, 71.2, 29.0, 27.6, 23.8, 21.2, 20.8; MS m/z 308 (M⁺, 0.4); HRMS calcd for C₁₆H₂₀O₄S 308.1082, found 308.1088.

According to the above procedure, (1R*,2R*)-2-(phenylsulfonyl)-2-ethenylcyclohexyl acetate (10.3 mg, 67% for 2 steps) was obtained from trans-9a (13.3 mg, 5.02 x 10⁻² mmol) as a white solid; IR 1740 cm⁻¹; ¹H NMR (C₆D₆) δ 7.74 (2H, dd, J = 7.6, 1.4 Hz), 6.98–6.87 (3H, m), 5.70 (1H, dd, J = 2.0, 1.8 Hz), 5.11 (1H, dd, J = 17.5, 11.0 Hz), 4.91 (1H, d, J = 11.0 Hz), 4.86 (1H, d, J = 17.5 Hz), 2.56 (1H, td, J = 12.8, 3.8 Hz), 1.87–1.70 (2H, m), 1.84 (3H, s), 1.44–1.00 (5H, m); MS m/z 308 (M⁺, 1.0); HRMS calcd for C₁₆H₂₀O₄S 308.1082, found 308.1084.

References