Supporting Information

Palladium-Catalyzed Direct Arylation of Aryl(azaaryl)methanes with Aryl Halides
Providing Triarylmethanes

Takashi Niwa, Hideki Yorimitsu,* and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Contents

Instrumentation and Chemicals S1
Experimental Procedure S2
Optimization of Reaction Conditions S3
Characterization Data S4

Instrumentation and Chemicals

1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were taken on Varian Mercury 500 spectrometers and were recorded in CDCl$_3$. Chemical shifts (δ) are in parts per million relative to tetramethylsilane at 0.00 ppm for 1H and relative to CDCl$_3$ at 77.0 ppm for 13C unless otherwise noted. IR spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F$_{254}$. Silica gel (Wakogel 200 mesh) was used for column chromatography. Elemental analyses were carried out at the Elemental Analysis Center of Kyoto University.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Xylene was purchased from Wako Pure Chemical Co. and stored over slices of sodium. Di(acetonitrile)dichloropalladium and cesium hydroxide monohydrate were purchased from Aldrich. Tricyclohexylphosphine was purchased from Strem. All reactions were carried out under argon atmosphere. Preparations of aryl(azaaryl)methanes 1 are shown below. 2-Benzylquinoline (1f) was prepared according to the method in the literature1.

Experimental Procedure

Synthesis of 2-Benzylpyrimidine (1a)

Benzylmagnesium chloride (0.76 M in THF, 28 mL, 21 mmol) was slowly added to a solution of 2-chloropyrimidine (2.2 g, 19 mmol), nickel acetylacetonate (250 mg, 1.0 mmol), and triphenylphosphine (1.0 g, 4.0 mmol) in THF (40 mL) at 0 °C. The reaction mixture was stirred for 2 h at 20 °C. Water (60 mL) was added, and the product was extracted with ethyl acetate (40 mL × 3). The combined organic layer was dried over sodium sulfate, and concentrated in vacuo. Silica gel column purification (hexane : ethyl acetate = 1 : 1) afforded 2-benzylpyrimidine (1a, 2.4 g, 13 mmol) in 70% yield.

Synthesis of 2-Benzylbenzothiazole (1h)

Phenylacetyl chloride (1.3 mL, 12 mmol) was added to a solution of 2-aminothiophenol (1.1 mL, 10 mmol) and magnesium sulfate (5.0 g) in toluene (20 mL) at 0 °C. The resulting mixture was heated at reflux for 6 h. NaHCO₃ aq. was added, and the product was extracted with ethyl acetate (20 mL × 3). The combined organic layer was dried over sodium sulfate, and concentrated in vacuo. Silica gel column purification (hexane:ethyl acetate = 2:1) provided 2-benzylbenzothiazole (1h, 2.1 g, 9.3 mmol) in 93% yield.

Typical Procedure for Palladium-catalyzed Direct Arylation of Aryl(azaaryl)methanes 1

Cesium hydroxide monohydrate (0.17 g, 1.0 mmol) and di(acetonitrile)dichloropalladium (6.5 mg, 0.025 mmol) was placed in a 30-mL two-necked reaction flask equipped with a Dimroth condenser under Ar atmosphere. Tricyclohexylphosphine (0.5 M in toluene, 0.15 mL, 0.075 mmol), xylene (1.0 mL), 2-benzylpyrimidine (1a, 85 mg, 0.50 mmol), and chlorobenzene (2a, 68 mg, 0.60 mmol) were sequentially added at ambient temperature. The resulting mixture was heated at reflux for 3 h. After the mixture was cooled to room temperature, water (10 mL) was added. The product was extracted with ethyl acetate (10 mL × 3). The combined organic layer was dried over sodium sulfate, and concentrated in vacuo. Purification on silica gel (hexane : ethyl acetate = 1 : 1) afforded 2-diphenylmethylypyridine (3a, 0.11 g, 0.43 mmol) in 86% yield.
Optimization of Reaction Conditions

The yields shown in this page are NMR yields.

Table S1. Effect of Base

<table>
<thead>
<tr>
<th>entry</th>
<th>base</th>
<th>time</th>
<th>3a</th>
<th>1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CsOH•H₂O</td>
<td>2 h</td>
<td>87%</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>KOH</td>
<td>3 h</td>
<td>76%</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>NaOH</td>
<td>6 h</td>
<td>65%</td>
<td>22%</td>
</tr>
<tr>
<td>4</td>
<td>Cs₂CO₃</td>
<td>3 h</td>
<td>6%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Table S2. Screening of Ligand

<table>
<thead>
<tr>
<th>entry</th>
<th>Ligand</th>
<th>3a</th>
<th>1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 mol% PCy₃</td>
<td>87</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>15 mol% P’Bu₃</td>
<td>5</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>15 mol% PPh₃</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>15 mol% PMe₃</td>
<td>trace</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>15 mol% P(o-tol)₃</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>7.5mol% DPPE</td>
<td>63</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>7.5mol% DPPP</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>7.5mol% DPPF</td>
<td>35</td>
<td>49</td>
</tr>
<tr>
<td>9</td>
<td>7.5mol% BINAP</td>
<td>86</td>
<td>4</td>
</tr>
</tbody>
</table>
Characterization Data for Compounds

2-Benzylpyrimidine (1a): IR (neat) 699, 746, 1419, 1496, 1561, 3032 cm⁻¹; ¹H NMR (CDCl₃) δ 4.30 (s, 2H), 7.12 (dd, J = 5.0, 5.0 Hz, 1H), 7.21–7.24 (m, 1H), 7.29–7.32 (m, 2H), 7.36–7.37 (m, 2H), 8.68 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 46.2, 118.8, 126.8, 128.7, 129.3, 138.3, 157.5, 170.2. Found: C, 77.87; H, 6.02; N, 16.37%. Calcd for C₁₁H₁₀N₂: C, 77.62; H, 5.92; N, 16.46%.

2-(2-Pyridylmethyl)pyridine (1e)²: ¹H NMR (CDCl₃) δ 4.35 (s, 2H), 7.14 (dd, J = 8.0, 5.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.62 (ddd, J = 8.0, 8.0, 2.0 Hz, 2H); 8.55–8.56 (m, 2H); ¹³C NMR (CDCl₃) δ 47.3, 121.7, 123.8, 136.8, 149.5, 159.5.

2-Benzylquinoline (1f): IR (nujol) 714, 747, 1425, 1453, 1505, 1598, 1618 cm⁻¹; ¹H NMR (CDCl₃) δ 4.35 (s, 2H), 7.21–7.25 (m, 2H), 7.28–7.32 (m, 4H), 7.49 (ddd, J = 7.0, 7.0, 1.0 Hz, 1H), 7.70 (ddd, J = 7.0, 7.0, 1.0 Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 45.7, 121.7, 126.1, 126.7, 126.9, 127.7, 128.8, 129.2, 129.4, 129.6, 136.7, 139.4, 148.0, 161.4.

2-Benzylbenzoxazole (1g): IR (neat) 695, 721, 746, 842, 1003, 1141, 1242, 1455, 1570, 3032 cm⁻¹; ¹H NMR (CDCl₃) δ 4.27 (s, 2H), 7.25–7.31 (m, 3H), 7.33–7.39 (m, 4H), 7.39–7.47 (m, 1H), 7.67–7.70 (m, 1H); ¹³C NMR (CDCl₃) δ 35.5, 110.6, 120.0, 124.4, 124.9, 127.5, 129.0, 129.2, 135.0, 141.5, 151.2, 165.4. Found: C, 80.38; H, 5.48; N, 6.69%. Calcd for C₁₄H₁₁NO: C, 80.36; H, 5.30; N, 6.69%.

2-Benzylbenothiazole (1h)³: IR (nujol) 702, 730, 759, 1437, 1454, 1495, 1517 cm⁻¹; ¹H NMR (CDCl₃) δ 4.44 (s, 2H), 7.28–7.38 (m, 6H), 7.45 (dd, J = 8.0, 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 40.8, 121.7, 123.0, 125.0, 126.1, 127.5, 129.0, 129.3, 135.8, 137.4, 153.4, 171.3.

2-(Diphenylmethyl)pyrimidine (3a): IR (nujol) 624, 704, 1377, 1415, 1452, 1560, 2855, 2925 cm⁻¹; ¹H NMR (CDCl₃) δ 5.80 (s, 1H), 7.11 (t, J = 5.0 Hz, 1H), 7.20–7.24 (m, 2H), 7.28–7.33 (m, 8H), 8.71 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 60.7, 118.9, 126.9, 128.5, 129.3, 141.9, 157.5, 171.9. Found: C, 82.87; H, 6.03; N, 11.33%. Calcd for C₁₇H₁₄N₂: C, 82.90; H, 5.73; N, 11.37%. m.p.: 65–68 °C.

2-[(1-Naphthyl)phenylmethyl]pyrimidine (3b): IR (nujol) 700, 801, 1418, 1559, 2855, 2925 cm⁻¹; ¹H NMR (CDCl₃) δ 6.56 (s, 1H), 7.13 (t, J = 5.0 Hz, 1H), 7.18 (d, J = 7.0 Hz, 1H),

7.24–7.27 (m, 1H), 7.29–7.34 (m, 4H), 7.38–7.45 (m, 3H), 7.76 (d, J = 8.0 Hz, 1H), 7.84–7.86 (m, 1H), 8.04 (d, J = 8.0 Hz, 1H), 8.73 (d, J = 5.0 Hz, 2H); 13C NMR (CDCl$_3$) δ 57.2, 118.8, 124.1, 125.6, 125.6, 126.4, 127.0, 127.2, 127.8, 128.7, 129.0, 129.8, 132.1, 134.2, 138.2, 141.4, 157.6, 172.3. Found: C, 85.03; H, 5.64; N, 9.43%. Calcd for C$_{31}$H$_{16}$N$_2$: C, 85.11; H, 5.44; N, 9.45%. m.p.: 124–126 °C.

2-[(2-Methylphenyl)phenylmethyl]pyrimidine (3c): IR (nujol) 703, 1378, 1413, 1462, 1559, 2855, 2925 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 2.25 (s, 3H), 5.98 (s, 1H), 7.06–7.08 (m, 1H), 7.10–7.18 (m, 4H), 7.20–7.24 (m, 3H), 7.28–7.31 (m, 2H), 8.71 (d, J = 5.0 Hz, 2H); 13C NMR (CDCl$_3$) δ 20.2, 57.4, 118.7, 126.1, 126.8, 126.9, 128.5, 129.1, 129.6, 130.6, 136.7, 140.3, 141.3, 157.5, 172.0. Found: C, 83.17; H, 6.22; N, 10.72%. Calcd for C$_{18}$H$_{14}$N$_2$: C, 83.04; H, 6.19; N, 10.76%. m.p.: 96–98 °C.

2-[(4-Methoxyphenyl)phenylmethyl]pyrimidine (3d): IR (nujol) 700, 1033, 1178, 1250, 1414, 1511, 1562, 2933, 3031 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 3.78 (s, 3H), 5.74 (s, 1H), 6.84–6.86 (m, 2H), 7.14 (dd, J = 5.0, 5.0 Hz, 1H), 7.23–7.25 (m, 3H), 7.29–7.30 (m, 4H), 8.73 (d, J = 5.0 Hz, 2H); 13C NMR (CDCl$_3$) δ 55.4, 60.0, 114.0, 118.9, 126.8, 128.5, 129.2, 130.4, 134.1, 142.3, 157.5, 158.5, 172.2.

2-[(4-Dimethylaminophenyl)phenylmethyl]pyrimidine (3e): IR (nujol) 1377, 1417, 1452, 1523, 1561, 2855, 2925 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 2.91 (s, 6H), 5.70 (s, 1H), 6.67–6.70 (m, 2H), 7.12 (t, J = 4.5 Hz, 2H), 7.19–7.20 (m, 3H), 7.28–7.30 (m, 4H), 8.72 (d, J = 4.5 Hz, 1H); 13C NMR (CDCl$_3$) δ 40.8, 60.0, 112.8, 118.7, 126.6, 128.4, 129.3, 129.9, 130.0, 142.7, 149.6, 157.4, 172.6. Found: C, 78.74; H, 6.68; N, 14.47%. Calcd for C$_{19}$H$_{15}$N$_2$: C, 78.86; H, 6.62; N, 14.52%. m.p.: 124–126 °C.

2-[(4-Ethynylphenyl)phenylmethyl]pyrimidine (3f): IR (neat) 700, 730, 909, 1416, 1495, 1510, 1561, 1569, 3032 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 5.20 (dd, J = 11.0, 1.0 Hz, 1H), 5.70 (dd, J = 12.5, 1.0 Hz, 1H), 5.78 (s, 1H), 6.68 (dd, J = 12.5, 11.0 Hz, 1H), 7.15 (t, J = 5.0 Hz, 1H), 7.21–7.25 (m, 1H), 7.27–7.31 (m, 6H), 7.34–7.36 (m, 2H), 8.74 (d, J = 5.0 Hz, 2H); 13C NMR (CDCl$_3$) δ 60.5, 113.8, 118.9, 126.4, 126.9, 128.6, 129.3, 129.5, 136.3, 136.7, 141.6, 141.9, 157.5, 171.9. Found: C, 83.91; H, 5.79; N, 10.20%. Calcd for C$_{19}$H$_{16}$N$_2$: C, 83.79; H, 5.92; N, 10.29%. m.p.: 68–70 °C.

tert-Butyl 4-[(phenyl(2-pyrimidyl)methyl]benzoate (3g): IR (nujol) 734, 1121, 1166, 1294, 1413, 1562, 1711 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 1.56 (s, 9H), 5.83 (s, 1H), 7.16 (t, J = 5.0 Hz, 1H), 7.22–7.32 (m, 5H), 7.37 (d, J = 8.0 Hz, 2H), 7.93 (d, J = 8.0 Hz, 2H), 8.73 (d, J = 5.0 Hz, 2H);
13C NMR (CDCl$_3$) δ 28.4, 60.7, 81.0, 119.1, 127.1, 128.7, 129.3, 129.3, 129.7, 130.7, 141.4, 146.6, 157.6, 165.8, 171.4.

2-(Diphenylmethyl)pyridine (4a): IR (nujor) 698, 1377, 1430, 1466, 1585, 2855, 2924 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 5.70 (s, 1H), 7.08 (d, $J = 5.0$ Hz, 1H), 7.13 (ddd, $J = 7.5, 4.5, 1.0$ Hz, 1H), 7.16–7.18 (m, 4H), 7.20–7.24 (m, 2H), 7.28–7.31 (m, 4H), 7.60 (ddd, $J = 7.5, 7.5, 2.0$ Hz, 1H), 8.60 (d, $J = 5.0$ Hz, 1H); 13C NMR (CDCl$_3$) δ 59.6, 121.6, 123.9, 126.7, 128.6, 129.5, 136.6, 142.9, 149.8, 163.4. Found: C, 88.21; H, 6.27; N, 5.55%. Calcd for C$_{18}$H$_{15}$N: C, 88.13; H, 6.16; N, 5.71%. m.p.: 68–70 °C.

4-(Diphenylmethyl)pyridine (4b)4: IR (nujor) 607, 700, 1031, 1378, 1416, 1448, 1591, 2925 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 5.50 (s, 1H), 7.03-7.04 (m, 2H), 7.09-7.11 (m, 4H), 7.23-7.27 (m, 2H), 7.29-7.33 (m, 4H), 8.50-8.51 (m, 2H); 13C NMR (CDCl$_3$) δ 56.4, 124.8, 127.0, 128.5, 129.5, 142.3, 150.0, 152.9. Found: C, 88.32; H, 6.40; N, 5.65%. Calcd for C$_{18}$H$_{15}$N: C, 88.13; H, 6.16; N, 5.71%. m.p.: 74–75 °C.

2-[Phenyl(2-pyridyl)methyl]pyridine (4d)4: IR (nujor) 1431, 1464, 1586, 2855, 2925 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 5.82 (s, 1H), 7.13 (ddd, $J = 8.0, 5.0, 1.0$ Hz, 2H), 7.23–7.31 (m, 7H), 7.62 (ddd, $J = 8.0, 8.0, 3.0$ Hz, 2H), 8.59 (ddd, $J = 5.0, 1.5, 1.0$ Hz, 2H); 13C NMR (CDCl$_3$) δ 61.9, 121.7, 124.2, 126.9, 128.7, 129.5, 136.6, 141.9, 149.6, 162.3. Found: C, 83.02; H, 5.94; N, 11.30%. Calcd for C$_{13}$H$_{14}$N$_2$: C, 82.90; H, 5.73; N, 11.37%. m.p.: 95–97 °C.

2-Diphenylmethylquinoline (4e)4: IR (nujor) 722, 757, 824, 1450, 1494, 2855, 2925 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 5.92 (s, 1H), 7.21–7.25 (m, 6H), 7.28–7.32 (m, 5H), 7.51 (ddd, $J = 7.0, 7.0, 1.5$ Hz, 1H), 7.69 (ddd, $J = 7.0, 7.0, 1.5$ Hz, 1H), 7.78 (dd, $J = 8.5, 1.5$ Hz, 1H), 8.07 (d, $J = 8.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 60.3, 122.1, 126.4, 126.7, 127.0, 127.6, 128.5, 128.6, 129.6, 136.5, 142.8, 148.1, 163.3. Found: C, 89.22; H, 5.74; N, 4.59%. Calcd for C$_{22}$H$_{17}$N: C, 89.46; H, 5.80; N, 4.74%. m.p.: 120–122 °C.

2-Diphenylmethylbenzoazole (4f)5: IR (nujor) 748, 909, 1003, 1141, 1243, 1455, 1496, 1564, 1602 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 5.77 (s, 1H), 7.25–7.35 (m, 12H), 7.45–7.47 (m, 1H), 7.72–7.74 (m, 1H); 13C NMR (CDCl$_3$) δ 51.7, 110.8, 120.4, 124.4, 125.0, 127.6, 128.9, 128.9, 139.4, 141.4, 151.1, 166.8.

2-Diphenylmethylbenzothiazole (4g)6: IR (nujor) 746, 1140, 1313, 1494, 1599, 3027, 3061

4 4-(Diphenylmethyl)pyridine is available from Aldrich.

cm⁻¹; ¹H NMR (CDCl₃) δ 5.95 (s, 1H), 7.27–7.37 (m, 11H), 7.46 (ddd, J = 8.0, 8.0, 2.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 56.0, 121.7, 123.4, 125.1, 126.2, 127.5, 128.9, 129.3, 135.8, 141.5, 153.6, 174.4.

1,4-Bis[di(2-pyridyl)methyl]benzene (6a): IR (nujol) 1433, 1467, 1587, 2855, 2925 cm⁻¹; ¹H NMR (CDCl₃) δ 5.78 (s, 2H), 7.12 (dd, J = 7.5, 5.0 Hz, 4H), 7.21 (s, 4H), 7.24 (d, J = 7.5 Hz, 4H), 7.60 (dd, J = 7.5, 7.5 Hz, 4H), 8.56 (d, J = 5.0 Hz, 4H); ¹³C NMR (CDCl₃) δ 61.6, 121.7, 124.3, 129.6, 136.6, 140.3, 149.6, 162.3. Found: C, 81.00; H, 5.23; N, 13.26%. Calcd for C₃₉H₂₂N₄: C, 81.13; H, 5.35; N, 13.52%.

1,3,5-Tris[di(2-pyridyl)methyl]benzene (6b): IR (nujol) 1432, 1465, 1585, 2855, 2924 cm⁻¹; ¹H NMR (CDCl₃) δ 5.70 (s, 3H), 7.01 (s, 3H), 7.07 (ddd, J = 8.0, 5.0, 1.0 Hz, 6H), 7.10 (d, J = 8.0 Hz, 6H), 7.53 (ddd, J = 8.0, 8.0, 1.0 Hz, 6H), 8.47 (d, J = 5.0 Hz, 6H); ¹³C NMR (CDCl₃) δ 61.8, 121.6, 124.2, 129.1, 136.5, 142.0, 149.4, 162.2.
Figure 1. 1H NMR spectrum of 3d
Figure 2. 13C NMR spectrum of 3d
Figure 3. 1H NMR spectrum of 3g
Figure 4. 13C NMR spectrum of 3g
Figure 5. 1H NMR spectrum of 4f
Figure 6. 13C NMR spectrum of 4f
Figure 7. 1H NMR spectrum of 4g
Figure 8. 13C NMR spectrum of 4g
Figure 9. 1H NMR spectrum of 6b
Figure 10. 13C NMR spectrum of 6b