Supporting Information

Author: Satoru Tsushima

Title: Hydration and water exchange mechanism of UO$_2$$^{2+}$ ion revisited: The validity of the "n+1" model

1. Structures of UO$_2$$^{2+}$ hydrate obtained at the B3PW91 level in the aqueous phase

<table>
<thead>
<tr>
<th>UO$_2$(H$_2$O)$_5$$^{2+}$: "5"(A1 type)</th>
<th>UO$_2$(H$_2$O)$_5$$^{2+}$: "5"(A1 type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u -0.000729</td>
<td>o -1.797821</td>
</tr>
<tr>
<td>o -0.011556</td>
<td>o -1.794278</td>
</tr>
<tr>
<td>o -0.013835</td>
<td>o 1.501441</td>
</tr>
<tr>
<td>o 0.009683</td>
<td>o 3.500745</td>
</tr>
<tr>
<td>o 2.321415</td>
<td>h 2.382306</td>
</tr>
<tr>
<td>o 1.511875</td>
<td>h 1.639731</td>
</tr>
<tr>
<td>o -1.499114</td>
<td>h -2.425327</td>
</tr>
<tr>
<td>o -2.329295</td>
<td>h -1.922458</td>
</tr>
<tr>
<td>h -0.022046</td>
<td>h -2.416787</td>
</tr>
<tr>
<td>h 0.008451</td>
<td>h -1.915041</td>
</tr>
<tr>
<td>h 2.618165</td>
<td>h 2.382920</td>
</tr>
<tr>
<td>h 3.116056</td>
<td>h 1.636249</td>
</tr>
<tr>
<td>h 1.777727</td>
<td>h 4.359211</td>
</tr>
<tr>
<td>h 1.810306</td>
<td>h 3.710968</td>
</tr>
<tr>
<td>h -1.777466</td>
<td>o -0.000543</td>
</tr>
<tr>
<td>h -1.777842</td>
<td>o 0.000604</td>
</tr>
<tr>
<td>h -3.110207</td>
<td>o -0.023370</td>
</tr>
<tr>
<td>h -2.606021</td>
<td>o -0.001216</td>
</tr>
<tr>
<td></td>
<td>h -2.380576</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Structures of UO$_2$$^{2+}$ hydrate obtained at the MP2 level in the gas phase

<table>
<thead>
<tr>
<th>UO$_2$(H$_2$O)$_5$$^{2+}$: "4+1"(A2 type)</th>
<th>UO$_2$(H$_2$O)$_5$$^{2+}$: "4+1"(A2 type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U -0.261587</td>
<td>U -0.261587</td>
</tr>
<tr>
<td>O 0.356282</td>
<td>O 0.356282</td>
</tr>
<tr>
<td>O -0.341157</td>
<td>O -0.341157</td>
</tr>
<tr>
<td>O -0.900619</td>
<td>O 1.926803</td>
</tr>
<tr>
<td>O -0.345066</td>
<td>O -0.345066</td>
</tr>
<tr>
<td>O -2.548601</td>
<td>O 4.041323</td>
</tr>
<tr>
<td>O 4.041323</td>
<td>O -0.001015</td>
</tr>
<tr>
<td></td>
<td>h -0.629302</td>
</tr>
<tr>
<td></td>
<td>h -0.090496</td>
</tr>
<tr>
<td></td>
<td>h 2.801893</td>
</tr>
<tr>
<td></td>
<td>h 2.166914</td>
</tr>
<tr>
<td></td>
<td>h -0.95520</td>
</tr>
<tr>
<td></td>
<td>h -0.634347</td>
</tr>
<tr>
<td></td>
<td>h -2.822633</td>
</tr>
<tr>
<td></td>
<td>h -3.371524</td>
</tr>
<tr>
<td></td>
<td>h 4.615707</td>
</tr>
<tr>
<td></td>
<td>h 4.613556</td>
</tr>
<tr>
<td></td>
<td>o -0.282591</td>
</tr>
<tr>
<td></td>
<td>o -0.840263</td>
</tr>
<tr>
<td></td>
<td>o 1.501975</td>
</tr>
<tr>
<td></td>
<td>o 0.249027</td>
</tr>
</tbody>
</table>
3. Structure of UO$_2$(H$_2$O)$_5^+$ and NpO$_2$(H$_2$O)$_5^{2+}$ obtained at the B3LYP level in the aqueous phase

4. Coordinates of precursors, intermediates, and transitions states in Fig. 1 and Fig. 3
Fig. 1 A2 "4+1" with one hydrogen bond

Fig. A3 "4+1" with two hydrogen bond

Fig. 1 TSA12

Fig. 2 A4 "6+1" with two hydrogen bond

Fig. 3 B1 "5+1" with one hydrogen bond

Fig. 3 B2 "5+1" with two hydrogen bond
Fig. 3 TSB23

5. Coordinates of $\text{UO}_2(\text{H}_2\text{O})_{2\text{+}}$ in Fig.2(a) and Fig.2(b)
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.619971</td>
<td>-1.490833</td>
<td>-0.790516</td>
</tr>
<tr>
<td>-2.626458</td>
<td>-1.465620</td>
<td>0.793819</td>
</tr>
<tr>
<td>-2.772938</td>
<td>1.439539</td>
<td>-0.045622</td>
</tr>
<tr>
<td>-1.708182</td>
<td>2.610541</td>
<td>-0.009564</td>
</tr>
<tr>
<td>1.267626</td>
<td>2.728176</td>
<td>-0.789901</td>
</tr>
<tr>
<td>1.240216</td>
<td>2.743591</td>
<td>0.793837</td>
</tr>
<tr>
<td>2.995221</td>
<td>-0.355637</td>
<td>-0.789683</td>
</tr>
<tr>
<td>3.002255</td>
<td>-0.375479</td>
<td>0.792911</td>
</tr>
<tr>
<td>1.361697</td>
<td>-2.804457</td>
<td>0.012504</td>
</tr>
<tr>
<td>-0.189994</td>
<td>-3.111830</td>
<td>-0.007844</td>
</tr>
</tbody>
</table>