Supporting information

for

\(\sigma\)-antibonding between valence s-orbitals as a primary cause for band gaps in compounds of diamond-like structures

Jürgen Köhler* and Shuiquan Deng
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany.

Changhoon Lee and Myung-Hwan Whangbo*
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
Figure S.1. COHP plot calculated for the Au-Sn bond on the basis of first principles TB-LMTO calculations for ScAuSn.
Figure S.2. Dispersion relations of the bands around the Fermi level calculated for (a) CaAuBi and (b) YAuPb by using the self-consistent full-potential linearized augmented-plane-wave method embodied in the WIEN2k code. The fat band representation is given for the valence s-orbital contributions of all the atoms.
Figure S.3. Schematic representation of the σ-antibonding orbital of AML at Γ, which is made up of the valence ns orbitals of M and L, around each electropositive atom A (a yellow circle) located at the center of an M$_4$ tetrahedron (shaded large circles) and an L$_6$ octahedron (unshaded medium circles). The ns orbitals of the M atoms make antibonding interactions with those of the adjacent L atoms such that the four ns orbitals of the M$_4$ tetrahedron make a group orbital of a_1 symmetry, and those of the L$_6$ octahedron a group orbital of a_{1g} symmetry.