Supporting Information

DIASTEREOMERICALLY AND ENANTIOMERICALLY PURE 2,3-DISUBSTITUTED PYRROLIDINES FROM 2,3-AZIRIDIN-1-OLS USING A SULFOXONIUM YLIDE: A ONE-CARBON HOMOLOGATIVE RELAY RING EXPANSION

Jennifer M. Schomaker, Somnath Bhattacharjee, Jun Yan, Babak Borhan*

Department of Chemistry, Michigan State University, East Lansing, MI 48824.
Experimental

General: Tetrahydrofuran was freshly distilled from Na/benzophenone. Methylene chloride was dried over CaH$_2$ and freshly distilled prior to use. Dimethylsulfoxide was dried over CaH$_2$ and distilled under high vacuum at temperatures <70 °C and stored over molecular sieves. Trimethylsulfoxonium iodide was dried under high vacuum at 30 °C overnight prior to use. Chloramine T was dried under high vacuum at 60 °C overnight prior to use. NBS was recrystallized from water and dried overnight under vacuum prior to use. All other reagents were used as purchased from Aldrich or Fluka. NMR spectra were obtained using either a 300 MHz Inova or 500 MHz Varian NMR spectrometer and referenced using deuterated chloroform or DMSO. Gas chromatographic analyses were performed using a Hewlett Packard gas chromatograph (6890 series) equipped with a capillary AltechSE-54 column (30 m x 320 mm x 0.25 mm). IR spectra were recorded on Nicolet IR/42 spectrometer using NaCl cells. Column chromatography was performed using Silicycle (40-60 µm) silica gel. Pre-coated silica gel 60 F$_{254}$ plates were used for analytical TLC and visualized using UV light or p-anisaldehyde as the stain. Preparation of MPA esters for determination of ee was done according to the Mosher’s ester procedure.1

Preparation of 8 (enantiomerically pure).2

![Structure of compound 8](image)

A solution of cis-2-buten-1,4-diol (8.8 g, 100 mmol, 1.0 eq) in 250 mL of THF was added dropwise to a suspension of NaH (4.4 g of a 60% dispersion in mineral oil, 110 mmol, 1.1 eq, washed 2x with dry pentane) in 500 mL of a 4:1 mixture of dry THF/DMSO. The mixture was stirred at rt for 30 min, then a solution of benzyl bromide (18.9 g, 110 mmol, 1.1 eq) in 250 mL of THF was added dropwise, followed immediately by tetrabutylammonium iodide (18.5 g, 50 mmol, 0.5 eq) in one portion. The mixture was heated to 60 °C overnight. After cooling, an equal volume of water was added and the mixture extracted 3x with 200 mL portions of diethyl ether. The combined organics were washed with brine, dried over sodium sulfate, and the solvent was removed under reduced pressure. The residue was column chromatographed using 3:1 hexanes/ethyl acetate to give the title compound as a clear to pale yellow oil (78% yield). 1H NMR (300 MHz, CDCl$_3$) δ 7.35 (m, 5H), 5.8 (m, 2H), 4.5 (s, 2H), 4.15 (dd, 2H), 4.1 (d, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 137.6, 132.3, 128.2, 127.6, 127.5, 127.5, 72.1, 65.4, 58.1.
Molecular sieves (10 g, 4 Å) were dried overnight at 130 ºC under high vacuum. The sieves were cooled under nitrogen and 600 mL of dry dichloromethane was added. The suspension was cooled to -23 ºC and (-)-diethyltartrate (2.0 mL, 11.8 mmol, 0.14 eq) was added dropwise, followed by Ti(O\text{OiPr})4 (2.5 mL, 8.4 mmol, 0.1 eq). The reaction was stirred for 30 min at -23 ºC to age the catalyst, then \(^1\)BuOOH (65.4 mL of a 3.68 M solution in toluene, 252.6 mmol, 3.0 eq) was added in one portion via syringe. The reaction was stirred for another 30 min and then the alcohol (15.0 g, 84.2 mmol, 1.0 eq) dissolved in 200 mL of dichloromethane was added dropwise via syringe pump over 1 h. The reaction was stirred at -23 ºC for 12 h, then warmed to -12 ºC for 1 h. Sodium hydroxide (30% in saturated NaCl) was added in one portion and the reaction was stirred for 30 min while allowing the mixture to warm to rt. The molecular sieves were filtered off using a Celite pad and the filtrate phase-separated. The aqueous layer was washed 3x with small portions of dichloromethane and the combined organics were washed with brine, dried over sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified via column chromatography (hexanes/ethyl acetate) to yield the title epoxy alcohol in 89% yield and 92% ee as determined via NMR analysis of its corresponding MPA ester. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.35 (m, 5H), 4.6 (dd, 2H), 3.7 (d, 2H), 3.65 (d, 2H), 3.3 (dd, 1H), 3.2 (dd, 1H), 2.7 (br s, 1H); \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 137.3, 128.4, 127.9, 127.8, 73.3, 67.9, 60.5, 55.7, 54.7.

The epoxy alcohol (19.4 g, 1.0 eq, 100 mmol) was placed in 400 mL of DMF (0.25M) and imidazole (17.0 g, 2.5 eq, 25 mmol) and TBSCl (15.8 g, 1.05 eq, 105 mmol) were added. The reaction was stirred at rt overnight and then diluted carefully with 1 L of water. The aqueous layer was extracted 3x with portions of diethyl ether, the combined organics were washed with brine and dried over sodium sulfate. The volatiles were removed via rotary evaporation and the residue was purified by column chromatography (9:1 hexanes/ethyl acetate) to give the product in 97% yield. \(^1\)H-NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.26-7.36 (m, 5H), 4.63 (d, 1H, \(J = 11.8\) Hz), 4.53 (d, 1H, \(J = 11.8\) Hz), 3.77 (dd, 1H, \(J = 11.8, 4.5\) Hz), 3.72 (dd, 1H, \(J = 11.4, 3.9\) Hz), 3.70 (dd, 1H, \(J = 11.8, 5.8\) Hz), 3.56 (dd, 1H, \(J = 11.3, 6.4\) Hz), 3.24 (ddd, 1H, \(J = 6.4, 4.0, 4.0\) Hz), 3.14 (ddd, 1H, \(J = 5.8, 4.5, 4.5\) Hz), 0.89 (9H, s), 0.07 (3H, s), 0.06 (3H, s). \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 128.4, 127.7, 73.1, 68.1, 61.6, 56.1, 55.0, 25.8, -5.5.

The silylated epoxide (46.5 g, 1.0 eq, 151 mmol) was placed in 600 mL of 8:1 2-methoxyethanol:water. Sodium azide (49.2 g, 5.0 eq, 755 mmol) was added followed by ammonium chloride (16.2 g, 2.0 eq, 302 mmol). The reaction was heated to reflux for 3 h and the volatiles removed via rotary evaporation. The resultant solid was extracted with 3 portions of chloroform and the combined organics were washed with a small
amount of brine. The chloroform was dried over sodium sulfate and the organics were removed via rotary evaporation followed by drying on a vacuum line overnight. The crude material (69% yield) was used in the subsequent step without purification.

The reaction could also be run as follows to generate the purified mixture of azido alcohols. Sodium azide (3.25 g, 50 mmole), followed by ammonium chloride (0.106 g, 20 mmole) was added to a stirred solution of the epoxy silyl ether from above (3.08 g, 10 mmole) in 40 ml of a 1:8 mixture of water and ethylene glycol monoethyl ether, and the mixture was heated under reflux for 3 h. It was concentrated under reduced pressure, and the residual semisolid was extracted with CHCl₃. The combined organics were dried over MgSO₄ and concentrate under reduced pressure. The crude product was purified by flash chromatography with hexane: ethyl acetate (7:1) to afford 2.49 g of colorless liquid that was a mixture of regioisomers (65% overall yield). ¹H-NMR of less polar isomer: δ 7.25-7.36 (m, 5H), 4.56-4.62 (m, 2H), 3.84-3.91 (m, 1H), 3.67-3.74 (m, 3H), 3.57-3.66 (m, 2H), 2.60 (dd, 1H, J = 12.0, 6.0 Hz), 0.90 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H). ¹H-NMR of more polar isomer: δ 7.37-7.39 (m, 5H), 4.57 (s, 2H), 3.97 (dd, 1H, J = 10.6, 3.6 Hz), 3.84 (dd, 1H, J = 10.6, 6.4 Hz), 3.70-3.81 (m, 1H), 3.63 (dd, 1H, J = 9.7, 3.7 Hz), 3.56 (dd, 1H, J = 9.7, 5.8 Hz), 3.51 (dd, 1H, J = 10.1, 6.5, 3.6 Hz), 2.70 (m, 1H), 0.91 (s, 9H), 0.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 128.4, 127.8, 127.7, 127.6, 73.5, 71.8, 71.1, 70.6, 70.2, 64.2, 63.7, 61.8, 25.7, -5.5.⁴

The crude mixture of azido alcohols (25.0 g, 1.0 eq, 71.2 mmol) was placed in 700 mL of dry THF and triphenylphosphine (20.5 g, 1.1 eq, 78.3 mmol) was added. The reaction was heated to reflux for 4 h, then cooled to 0 °C with an ice bath. Toluenesulfonyl chloride (20.4 g, 1.5 eq, 106.8 mmol) and triethylamine (14.9 mL, 1.5 eq, 106.8 mmol) were added and the reaction allowed to stir at rt overnight. The reaction was diluted with saturated sodium bicarbonate and stirred vigorously for 5 min. Extraction with diethyl ether, drying of the organic with MgSO₄ and removal of the solvent under reduced pressure was followed by purification via column chromatography (9:1 hexanes/ethyl acetate) to give the product in 64% yield contaminated with a small amount of tosyl chloride. ¹H-NMR (300 MHz, CDCl₃) δ 7.91-7.94 (d, 2H, J = 8.2 Hz), 7.31-7.40 (m, 7H), 4.60 (d, 1H, J = 12.2 Hz), 4.56 (d, 1H, J = 12.2 Hz), 3.85-3.99 (m, 4H), 3.02-3.13 (m, 2H), 2.48 (s, 3H), 0.91 (s, 9H), 0.71 (s, 3H), 0.62 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 137.6, 134.8, 129.5, 128.3, 128.1, 127.6, 127.5, 72.7, 66.5, 60.2, 43.8, 42.1, 25.7, 21.6, 18.1, -5.6, -5.5.⁴

The reaction was also performed on the purified mixture of azido alcohols. A mixture of triphenylphosphine (2.22 g, 8.47 mmole) and the azido alcohols (2.98 g, 8.47 mmole) in 7.5 ml of toluene was heated under reflux for 5 h, then allowed to cool. Triethylamine (1.77 ml, 12.71 mmol), followed by p-toluenesulfonyl chloride (2.42 g, 12.71 mmole), was added to the above mixture at 0 °C, and the whole mixture was stirred at room
temperature for 3 h. It was cooled to 0 °C, and a saturated NaHCO₃ solution (10 ml) was added with vigorous stirring. This mixture was extracted with Et₂O. The organic layer was washed successively with 5% citric acid, water, 5% NaHCO₃, and water, and dried over MgSO₄. Solvents were removed under reduced pressure and purified by flash chromatography with hexane-ethyl acetate (7:1) to give 3.36 g (86% yield) of the aziridine as colorless oil.

1H-NMR (300 MHz, CDCl₃) δ 7.91-7.94 (d, 2H, J = 8.2 Hz), 7.31-7.40 (m, 7H), 4.60 (d, 1H, J = 12.2 Hz), 4.56 (d, 1H, J = 12.2 Hz), 3.85-3.99 (m, 4H), 3.02-3.13 (m, 2H), 2.48 (s, 3H), 0.91 (s, 9H), 0.71 (s, 3H), 0.62 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 144.4, 137.6, 134.8, 129.5, 128.3, 128.1, 127.6, 127.5, 72.7, 66.5, 60.2, 43.8, 42.1, 25.7, 21.6, 18.1, -5.6, -5.5.

Tetrabutylammonium fluoride in THF (8 ml, 8 mmol as a 1M solution in THF) was added via syringe to a stirred solution of the protected aziridinol (3.69 g, 8 mmol) in 16 ml of THF at –78 °C, and the mixture was allowed to warm to 0 °C and stirred at this temperature for an additional 1 h. The mixture was poured into ice-water and extracted with Et₂O. The organic layer was washed successively with 5% citric acid, water, 5% NaHCO₃, and water, and dried over MgSO₄ and concentrated under reduced pressure. The crude compound was purified by flash chromatography with 3:1 hexanes/ethyl acetate to give 2.48 g (89% yield) of the aziridinol as a colorless oil. 1H-NMR (300 MHz, CDCl₃) δ 7.83-7.87 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 4.43 (1H, d, J = 11.7 Hz), 4.40 (1H, d, J = 11.7 Hz), 3.65 (2H, ddd, J = 5.9, 4.9 Hz), 3.60 (1H, m), 3.50 (1H, dd, J = 6.4, 5.9 Hz), 3.10 (2H, m), 2.70 (1H, bs), 2.42 (3H, s); 13C NMR (75 MHz, CDCl₃) δ 144.8, 137.1, 134.3, 129.8, 129.7, 128.7, 128.1, 128.0, 127.7, 73.2, 66.5, 59.4, 43.2, 42.0, 21.7.

Preparation of 8 (racemic).

The allylic alcohol (1.78 g, 10.0 mmol, 1.0 eq) was placed in 50 mL of dry acetonitrile and treated with Chloramine T (1.05 eq) and recrystallized NBS (0.2 eq). The light yellow slurry was stirred at rt overnight, diluted with an equal volume of water and extracted with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles removed by rotary evaporation. The residue was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the desired aziridinol 8 in 52% yield as a white solid. 1H NMR (300 MHz, CDCl₃) δ 7.8 (d, 2H, J = 8.2 Hz), 7.1-7.4 (overlapping m, 7H), 4.4 (dd, 2H, J = 17.6, 11.8 Hz), 3.6 (br m, 4H), 3.1 (m, 2H), 2.4 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 144.7, 137.1, 134.2, 129.7, 128.4,
128.0, 127.9, 127.6, 73.1, 66.4, 59.3, 43.1, 42.1, 21.6. IR 3511 (OH), 1597 (aromatic), 1325, 1092 (SO₂). HRMS [M + H]⁺ calculated: 348.1270; observed: 348.1259.

Preparation of 8a.

![Aziridinol](image)

The aziridinol (1.0 g, 2.88 mmol, 1.0 eq) was placed in 30 mL of dry THF and NaH (0.46 g as a 60% dispersion in mineral oil, 4.0 eq, 11.5 mmol) was added. The reaction was stirred at rt for 4 h, then cooled to 0 °C and quenched carefully with saturated ammonium chloride. The aqueous was extracted 3x with portions of ether and the combined organics washed with brine. The organics were dried over sodium sulfate and the volatiles removed via rotary evaporation. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the epoxy amine in 90% yield. **¹H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.5), 7.1-7.4 (overlapping m, 7H), 5.1 (d, 1H, J = 8.8), 4.4 (s, 2H), 3.6 (br m, 1H), 3.45 (dd, 1H, J = 9.6, 4.7 Hz), 3.35 (dd, 1H, J = 9.6, 6.3 Hz), 3.1 (br m, 1H), 2.65 (overlapping dd, 1H, J = 4.7 Hz), 2.6 (dd, 1H, J = 4.7, 2.7 Hz), 2.4 (s, 3H); **¹³C NMR (75 MHz, CDCl₃) δ 143.3, 137.7, 137.3, 129.5, 128.3, 127.7, 127.5, 126.8, 73.1, 69.7, 52.2, 51.5, 43.9, 21.4. IR 3515 (br, OH), 1346, 1161 (SO₂). HRMS calculated: 348.1270; observed: 348.1280.

Preparation of 8b from epoxy amine 8a.

![Pyrrolidine](image)

A suspension of NaH (58.2 mg as a 60% dispersion in mineral oil (washed twice with dry pentane), 1.45 mmol, 5.0 eq) in DMSO (3 mL, 0.1 M in aziridinol) was treated with trimethylsulfoxonium iodide (0.32 g, 1.45 mmol, 5.0 eq) and the reaction was stirred at rt for 30 min to give a milky-white solution. The epoxy amine (0.1 g, 0.29 mmol, 1.0 eq) was added to the ylide, stirred at rt for 30 min and heated to 80 °C for 24 h. The cooled reaction was quenched with 10 mL of saturated ammonium chloride and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles evaporated. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the desired pyrrolidine in 99% yield as a thick oil. **¹H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (overlapping m, 7H), 4.5 (s, 2H), 4.2 (m, 1H), 4.0 (dd, 1H, J = 9.6, 4.1 Hz), 3.85 (dd, 1H, J = 9.6, 7.4 Hz), 3.65 (m, 1H), 3.5 (m, 1H), 3.25 (m, 1H), 2.95 (br d, 1H, J = 4.9 Hz), 2.4 (s, 3H), 1.8 (m, 1H), 1.6 (m, 1H); **¹³C NMR (75 MHz, CDCl₃) δ 143.7, 137.4, 134.1, 129.7, 128.5, 128.0, 127.9, 127.4, 73.8, 72.6, 70.1, 61.1, 46.7, 32.8, 21.5. IR 3515 (br, OH), 1346, 1161 (SO₂). HRMS calculated: 361.1348; observed: 361.1348.
Dimethylsulfoxide was dried by stirring overnight over CaH₂ and distilled under high vacuum into a flame-dried flask containing molecular sieves. Trimethylsulfoxonium iodide was dried overnight at rt under high vacuum. Dimethylsulfoxonium methyldide was prepared fresh for each reaction. Sodium hydride (0.32 g as a 60% dispersion in mineral oil, 8.0 mmol, 8.0 eq, washed twice with pentane dried over sodium metal) was placed in a flame-dried flask and dry dimethylsulfoxide (10 mL) was added via syringe. Trimethylsulfoxonium iodide (1.77 g, 8.0 mmol, 8.0 eq) was added in small portions over 20-30 min. After addition of the trimethylsulfoxonium iodide was complete, the reaction was stirred for an additional 30 min until the bubbling of the milk-white suspension ceased. The aziridinol 8 (0.35 g, 1.0 mmol, 1.0 eq) dissolved in a small amount of DMSO was added dropwise and the reaction was stirred at rt for 4 h to complete the aza-Payne rearrangement. The reaction was then covered with aluminum foil and heated to 80-85 ºC for 36 h. The dark brown mixture was cooled and diluted with 2x volume of water and 1 mL of saturated ammonium chloride. The reaction was extracted several times with ethyl acetate, the combined organics washed with brine and dried over sodium sulfate. After evaporation, the residue was column chromatographed using a hexane/ethyl acetate gradient to give compound 8b in 82% yield as a thick oil that eventually crystallized to a mushy solid. ¹H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (overlapping m, 7H), 4.5 (s, 2H), 4.2 (m, 1H), 4.0 (dd, 1H, J = 9.6, 4.1 Hz), 3.85 (dd, 1H, J = 9.6, 7.4 Hz), 3.65 (m, 1H), 3.5 (m, 1H), 3.25 (m, 1H), 2.95 (br d, 1H, J = 4.9 Hz), 2.4 (s, 3H), 1.8 (m, 1H), 1.6 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 143.7, 137.4, 134.1, 129.7, 128.5, 128.0, 127.9, 127.4, 73.8, 72.6, 70.1, 61.1, 46.7, 32.8, 21.5. HRMS calculated: 361.1348; observed: 361.1348.

Another attempt to increase the yield of the one-pot reaction involved treating the aziridinol (0.25 g, 0.72 mmol, 1.0 eq) with 1.1 eq of the dimethylsulfoxonium methyldide as a 0.1 M solution in DMSO and stirring at rt for 4 h. An additional 7.0 eq of the ylide was added and the reaction heated to 80 ºC for 36 h. Following the typical workup and purification procedures, the desired pyrrolidine was obtained in 78% yield.

Preparation of 8b (one-pot procedure using THF as the solvent).
The same reaction described above was also repeated in THF as the solvent. The dimethylsulfoxonium methyldide was prepared as a 0.1 M solution in THF by refluxing NaH and trimethylsulfoxonium iodide. The aziridinol (0.1 g, 0.29 mmol, 1.0 eq) was treated with 11.6 mL (4.0 eq) of the 0.1 M solution of dimethylsulfoxonium methyldide in THF and the reaction stirred for 4 h at rt. The reaction in a sealed tube was then heated to 80 °C overnight, cooled, diluted with 2x the volume of water and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the solvent was removed under reduced pressure. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 79% yield. \(^{1}H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.2\) Hz), 7.2-7.4 (overlapping m, 7H), 4.5 (s, 2H), 4.2 (m, 1H), 4.0 (dd, 1H, \(J = 9.6, 4.1\) Hz), 3.85 (dd, 1H, \(J = 9.6, 7.4\) Hz), 3.65 (m, 1H), 3.5 (m, 1H), 3.25 (m, 1H), 2.95 (br d, 1H, \(J = 4.9\) Hz), 2.4 (s, 3H), 1.8 (m, 1H), 1.6 (m, 1H); \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) \(\delta\) 143.7, 137.4, 134.1, 129.7, 128.5, 128.0, 127.9, 127.4, 73.8, 72.6, 70.1, 61.1, 46.7, 32.8, 21.5. HRMS calculated: 361.1348; observed: 361.1348.

Preparation of O-Methylated 8b.

If the ylide was not completely formed and excess trimethylsulfoxonium iodide remained, the O-methylated pyrrolidine could be generated. \(^{1}H\) NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.2\) Hz), 7.2-7.4 (d and m, 7H, \(J = 8.2\) Hz), 4.5 (s, 2H), 3.8 (2 m, 3H), 3.6 (m, 1H), 3.45 (m, 1H), 3.35 (m, 1H), 3.3 (s, 3H), 2.4 (s, 3H), 1.9 (m, 1H), 1.5 (m, 1H); \(^{13}C\) NMR (75 MHz, CDCl\(_3\)) \(\delta\) 143.4, 138.4, 134.5, 129.6, 128.2, 127.5, 127.4, 80.1, 73.3, 68.7, 61.2, 57.9, 46.2, 29.3, 21.4.

Preparation of 9 (enantiomerically pure).

The monobenzylated alcohol of ethylene glycol was prepared as previously described for the benzylation of cis-2-butene-1,4-diol in 84% yield.
The alcohol (2.0 g, 13.2 mmol, 1.0 eq) was placed in 25 mL of dry dichloromethane and
cooled to 0 °C. Pyridine (3.0 mL) and DMP (1.5 eq) were added and the reaction was
stirred at 15 °C for another 2 h. Triphenylphosphinocarboxyethyl ylide (1.6 eq) and 25
mL of additional dichloromethane were added and the reaction was warmed to rt and
stirred for 36 h. The dichloromethane was removed by rotary evaporation and diethyl
ether added to the residue. The resulting solids were filtered through a pad of Celite and
washed well with portions of diethyl ether. The filtrate was concentrated and the residue
was purified via column chromatography (9:1 hexanes/ethyl acetate) to give the ester in
66% yield over the two steps.7

The ester (1.9 g, 8.1 mmol, 1.0 eq) was placed in 25 mL of dry THF and cooled to -20 °C.
Diisobutylaluminum hydride (11.9 mL, 17.8 mmol as a 1.5 M solution in toluene, 2.2 eq)
was added dropwise and the reaction was stirred at -20 °C for 3 h. The reaction was
carefully quenched with saturated Rochelle’s salt and then glycerol (0.2 mL/mmol
DIBAL) was added and the reaction stirred overnight to break up the aluminum complex.
The phases were separated and the aqueous layer washed several times with ethyl acetate.
The combined organics were washed with brine, dried over sodium sulfate, and the
solvent was removed under reduced pressure. The residue was purified via column
chromatography (hexanes/ethyl acetate gradient) to give the allylic alcohol in 97% yield.
1H NMR (300 MHz, CDCl3) δ 7.2 (m, 5H), 5.7 (m, 2H), 4.4 (s, 2H), 4.0 (d, 2H), 3.85 (d,
2H), 1.9 (br s, 1H); 13C NMR (75 MHz, CDCl3) δ 138.0, 132.3, 128.3, 127.7, 127.6,
127.5, 72.2, 70.0, 62.7.8

Sharpless asymmetric epoxidation gave the prerequisite epoxy alcohol 5 in 94% yield and
97% ee. 1H NMR (300 MHz, CDCl3) δ 7.3 (m, 5H), 4.5 (dd, 2H), 3.8-3.9 (d of m, 1H),
3.7-3.75 (dd, 1H), 3.55 (m, 1H), 3.45 (dd, 1H), 3.2 (m, 1H), 3.9 (m, 1H), 2.9 (br t, 1H);
13C NMR (75 MHz, CDCl3) δ 137.6, 128.4, 127.7, 127.69, 73.2, 69.5, 61.1, 55.7, 54.2.8

The epoxide (4.0 g, 20.6 mmol, 1.0 eq) was placed in 80 mL of DMF and treated with
TBSCl (3.3 g, 21.6 mmol, 1.05 eq) and imidazole (3.5 g, 51.5 mmol, 2.5 eq). The
reaction was stirred at rt overnight, quenched with 150 mL of water and extracted 3x with
portions of diethyl ether. The combined organics were washed with brine, dried over
sodium sulfate and the volatiles were removed by rotary evaporation. The residue was
purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in
84% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.3 (m, 5H), 4.61 (d, 1H, $J = 12$ Hz), 4.55 (d, 1H, $J = 12$ Hz), 3.85 (dd, 1H, $J = 12.0, 3.1$ Hz), 3.75 (dd, 1H, $J = 11.6, 3.1$ Hz), 3.65 (dd, 1H, $J = 12.0, 4.6$ Hz), 3.5 (dd, 1H, $J = 11.6, 5.6$ Hz), 3.1 (m, 1H), 3.0 (m, 1H), 0.9 (s, 9H), 0.1 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 137.9, 128.4, 127.7, 127.6, 73.2, 69.9, 62.8, 55.9, 54.4, 25.8, 18.3, -5.38, -5.41.

The silylated epoxide (4.5 g, 1.0 eq, 14.6 mmol) was placed in 60 mL of 8:1 2-methoxyethanol:water. Sodium azide (4.8 g, 5.0 eq, 73 mmol) was added followed by ammonium chloride (1.6 g, 2.0 eq, 29.2 mmol). The reaction was heated to reflux for 3 h and the volatiles removed via rotary evaporation. The resultant solid was extracted with 3 portions of chloroform and the combined organics was washed with a small amount of brine. The chloroform was dried over sodium sulfate and the organics were removed via rotary evaporation followed by drying on a vacuum line overnight. The crude material was used in the subsequent step without purification.

The crude azido alcohol (1.0 eq, 14.6 mmol) was placed in 150 mL of dry THF and triphenylphosphine (4.2 g, 1.1 eq, 16.1 mmol) was added. The reaction was heated to reflux for 4 h, then cooled to 0 °C with an ice bath. Toluenesulfonyl chloride (4.2 g, 1.5 eq, 21.9 mmol) and triethylamine (3.1 mL, 1.5 eq, 21.9 mmol) were added and the reaction was allowed to stir at rt overnight. The reaction was diluted with saturated sodium bicarbonate and stirred vigorously for 5 min. Extraction with diethyl ether was followed by extraction of the organics with brine, drying over MgSO$_4$ and removal of the organic under reduced pressure. Purification via column chromatography (9:1 hexanes/ethyl acetate) gave the product in 57% yield over the two steps contaminated with a small amount of tosyl chloride. 1H NMR (300 MHz, CDCl$_3$) δ 7.8 (d, 2H, $J = 8.2$ Hz), 7.2-7.3 (m, 7H), 4.54 (d, 1H, $J = 12.2$ Hz), 4.50 (d, 1H, $J = 12.2$ Hz), 3.8-3.85 (m, 4H), 2.95-3.01 (2 m, 2H), 2.4 (s, 3H), 0.9 (s, 9H), -0.031 (s, 3H), -0.021 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 144.0, 137.1, 137.0, 130.2, 129.4, 128.3, 127.7, 127.6, 127.5, 73.0, 67.8, 61.3, 47.1, 45.4, 25.7, 21.5, 18.2, -5.5.
The protected aziridinol (2.0 g, 4.3 mmol, 1.0 eq) was placed in 45 mL of THF and cooled to -78 °C. TBAF (4.8 mL of a 1 M solution in THF, 4.8 mmol, 1.1 eq) was added dropwise and the reaction was warmed slowly to 0 °C for 30 min. The reaction was quenched with saturated ammonium chloride and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 3:1 hexanes/ethyl acetate) to give the desired product in 86% yield. ^1H NMR (300 MHz, CDCl₃) δ 7.8 (d, 2H, J = 8.2), 7.1-7.4 (m, 7H), 4.4 (s, 2H), 4.1 (m, 1H), 3.9 (m, 1H), 3.7 (dd, 1H, J = 11.0, 4.1 Hz), 3.5 (dd, 1H, J = 11.0, 6.6 Hz), 3.2 (d of t, 1H, J = 6.6, 4.4 Hz), 3.0 (m, 1H), 2.8 (br s, 1H), 2.4 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 144.3, 137.5, 136.8, 129.6, 128.3, 127.7, 127.5, 127.4, 73.0, 68.4, 60.6, 48.9, 44.6, 21.6. IR 3447 (br, OH), 1597 (aromatic), 1325, 1161 (SO₂). HRMS [M + H]⁺ calculated: 348.1270; observed: 348.1280.

Preparation of 9a.

The aziridinol 9 (0.45 g, 1.3 mmol, 1.0 eq) was placed in 13 mL of dry THF and NaH (0.21 g as a 60% dispersion in mineral oil, 5.2 mmol, 4.0 eq) was added. The reaction was stirred at rt for 4 h, then cooled to 0 °C and quenched carefully with saturated ammonium chloride. The aqueous was extracted 3x with portions of ether and the combined organics were washed with brine. The organics were dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the epoxy amine in 89% yield. ^1H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.2 Hz), 7.1-7.3 (m, 7H), 5.6 (d, 1H, J = 6.0 Hz), 4.4 (d, 2H, J = 16.4 Hz), 3.55 (dd, 1H, J = 9.1, 3.3 Hz), 3.25 (dd, 1H, J = 9.1, 3.3 Hz), 3.0 (br m, 2H), 2.65 (m, 1H), 2.55 (m, 1H), 2.4 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 143.2, 137.5, 137.2, 129.4, 128.2, 127.6, 127.4, 126.8, 73.0, 68.9, 55.1, 51.2, 47.0, 29.5, 21.3. IR 3279 (NH), 1331, 1161 (SO₂). HRMS [M + H]⁺ calculated: 348.1270; observed: 348.1264.

Preparation of 9b from the epoxy amine 9a.
A suspension of NaH (0.52 g as a 60% dispersion in mineral oil, 13.0 mmol, 10.0 eq) in DMSO (13 mL, 0.1 M in aziridinol) was treated with trimethylsulfoxonium iodide (2.9 g, 13.0 mmol, 10.0 eq) and the reaction was stirred at rt for 30 min to give a milky-white solution. The epoxy amine 9a (0.288 g, 1.3 mmol, 1.0 eq) was added to the ylide, stirred at rt for 30 min and heated to 85 °C for 24 h. The cooled reaction was quenched with 30 mL of saturated ammonium chloride and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles evaporated. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the desired pyrrolidine in 97% yield as a white solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.2\) Hz), 7.2-7.4 (m, 7H), 4.5 (d, 2H, \(J = 15.9\) Hz), 4.2 (br m, 1H), 3.8 (dd, 1H, \(J = 9.6, 3.6\) Hz), 3.5 (dd, 1H, \(J = 8.5, 3.6\) Hz), 3.3-3.4 (m, 2H), 3.2 (m, 1H), 2.4 (s, 3H), 1.95 (m, 1H), 1.8 (br s, 1H), 1.6 (m, 1H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 143.4, 137.8, 133.4, 129.5, 128.3, 127.7, 127.6, 73.6, 73.4, 71.8, 67.3, 46.7, 31.8, 21.4. IR 3513 (br, OH), 1599 (aromatic), 1341, 1159 (SO\(_2\)). HRMS calculated: 361.1348; observed: 361.1352.

Preparation of 9b (one-pot reaction).

Sodium hydride (0.17 g as a 60% dispersion in mineral oil, 4.16 mmol, 5.0 eq, washed twice with pentane dried over sodium metal) was placed in a flame-dried flask and dry dimethylsulfoxide (8 mL) was added via syringe. Trimethylsulfoxonium iodide (0.92 g, 4.16 mmol, 5.0 eq) was added in small portions over 20-30 min. After addition of the trimethylsulfoxonium iodide was complete, the reaction was stirred for an additional 30 min until the bubbling of the milk-white suspension ceased. The aziridinol (0.29 g, 0.83 mmol, 1.0 eq) dissolved in a small amount of DMSO was added dropwise and the reaction stirred at rt for 4 h, covered with aluminum foil and heated to 80-85 °C for 36 h. The dark brown mixture was cooled and diluted with 2x volume of water and 1 mL of saturated ammonium chloride. The reaction was extracted several times with ethyl acetate, the combined organics were washed with brine and dried over sodium sulfate. After evaporation, the residue was column chromatographed using a hexane/ethyl acetate gradient to give compound 9b in 78% yield as a white solid. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.2\) Hz), 7.2-7.4 (m, 7H), 4.5 (d, 2H, \(J = 15.9\) Hz), 4.2 (br m, 1H), 3.8 (dd, 1H, \(J = 9.6, 3.6\) Hz), 3.5 (dd, 1H, \(J = 8.5, 3.6\) Hz), 3.3-3.4 (m, 2H), 3.2 (m, 1H), 2.4 (s, 3H), 1.95 (m, 1H), 1.8 (br s, 1H), 1.6 (m, 1H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 143.4,
If the reaction were run at lower temperatures (rt to 70 °C) and excess trimethylsulfoxonium iodide were present, the N-methylated epoxy amine could be isolated. 1H NMR (300 MHz, CDCl$_3$) δ 7.6 (d, 2H, $J = 8.2$ Hz), 7.2-7.4 (m, 7H), 4.3 (d, 2H, $J = 15.4$ Hz), 4.1 (m, 1H), 3.9 (m, 1H), 3.8 (dd, 1H, $J = 11.8$, 3.3 Hz), 3.6 (m, 1H), 3.4-3.55 (overlapping m, 2H), 2.8 (s, 3H), 2.4 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 143.3, 137.2, 136.0, 129.4, 128.3, 127.8, 127.7, 127.4, 73.2, 70.9, 67.6, 58.4, 48.2, 31.0, 21.5.

Preparation of MPA ester of 9b.

The pyrrolidine 9b (25.0 mg, 0.069 mmol, 1.0 eq) was dissolved in 1 mL of dry dichloromethane and treated with (S)-(−)-methoxyphenylacetic acid (12.1 mg, 0.073 mmol, 1.05 eq), dicyclohexyl carbodiimide (15.0 mg, 0.073 mmol, 1.05 eq) and a catalytic amount of DMAP. The reaction was stirred overnight at rt and diluted with more dichloromethane. The organics were washed with dilute HCl, saturated sodium bicarbonate and brine, dried over sodium sulfate and the volatiles were evaporated. The crude NMR showed one major diastereomer and an ee of >95% for the pyrrolidine. 1H NMR (300 MHz, CDCl$_3$) δ 7.7 (d, 2H, $J = 8.2$ Hz), 7.0-7.4 (m, 12H), 5.2 (d, 1H), 4.4 (s, 2H), 4.25 (s, 1H), 3.7 (m, 2H), 3.5 (m, 2H), 3.2 (s, 3H), 3.1 (m, 1H), 2.4 (s, 3H), 2.2 (m, 1H), 1.8 (m, 1H).

Preparation of 10 (racemic).

A suspension of NaH (4.9 g as a 60% dispersion in mineral oil, washed twice with dry pentane, 121.0 mmol, 1.0 eq) in 1 L of THF was treated with 1,2-ethanediol (7.5 g, 121.0 mmol, 1.0 eq) dropwise. The reaction was stirred at rt for 30 min, and a solution of benzyl bromide (20.7 g, 121.0 mmol, 1.0 eq) dissolved in a small amount of THF was added dropwise. The reaction was stirred at reflux overnight, cooled and diluted with
500 mL of water. The mixture was extracted 3x with portions of diethyl ether, the combined organics were washed with brine, dried over sodium sulfate and the volatiles removed by rotary evaporation. The residue was purified by column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 76% yield.

The monobenzylated ethylene glycol (6.7 g, 44.1 mmol, 1.0 eq) was placed in 70 mL of benzene and triphenylphosphine (19.7 g, 75.0 mmol, 1.7 eq) and imidazole (9.0 g, 132.3 mmol, 3.0 eq) were added. The mixture was cooled to 0 °C and iodine (19.1 g, 75.0 mmol, 1.7 eq) added in portions over 2 h. After no more starting material was detected by TLC, the reaction was quenched by the addition of 2 mL of methanol and stirred at rt for 1 h. Silica gel (50 g) was added to the reaction and stirring continued for another 20 min. Filtration through through a pad of silica gel with 9:1 hexanes/ethyl acetate was followed by evaporation of the filtrate to give the iodide in 66% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.4 (m, 5H), 4.6 (s, 2H), 3.8 (t, 2H), 3.4 (t, 2H), 1.4 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 128.4, 128.2, 127.7, 127.65, 72.8, 70.6, 3.0.

The reaction could also be performed in the following fashion: A solution of the alcohol (14.5 g, 95.4 mmol, 1.0 eq) was placed in 150 mL of dry dichloromethane and cooled to 0 °C. Methanesulfonyl chloride (15.0 mL, 190.8 mmol, 2.0 eq) was added, followed by careful dropwise addition of triethylamine (26.6 mL, 190.8 mmol, 2.0 eq). The reaction was stirred at rt for 30 min and 600 mL of dry acetone added, followed by NaI (143.0 g, 954 mmol, 10.0 eq). The reaction was stirred overnight at rt, diluted with an equal volume of water and the aqueous extracted with several portions of diethyl ether. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified by column chromatography (95:5 hexanes/ethyl acetate) to give the iodide in 87% yield.

Dry tetrahydrofuran (800 mL) was combined with BPS-protected propargyl alcohol (30.0 g, 102.2 mmol, 1.2 eq) and cooled to -78 ºC. A solution of nBuLi (37.4 mL, 2.5 M solution in hexanes, 93.7 mmol, 1.1 eq) was added dropwise over 20 min. The reaction was allowed to stir for 30 min. The iodide (21.8 g, 83.2 mmol, 1.0 eq) dissolved in 50 mL of dry HMPA was added dropwise over 15 min and the reaction stirred at -78 ºC overnight and warmed briefly to -30 ºC before quenching with an equal volume of water. The mixture extracted 3x with ethyl acetate, the combined organics washed with brine, dried over sodium sulfate, and the solvent was removed under reduced pressure to give the product in 84% yield after column chromatography (9:1 hexanes/ethyl acetate). ¹H NMR (300 MHz, CDCl₃) δ 7.8 (m, 4H), 7.4 (m, 11H), 4.6 (s, 2H), 4.4 (m, 2H), 3.5 (m, 2H), 2.5 (m, 2H), 1.1 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 135.6, 133.2, 129.8, 129.7, 129.4, 128.4, 127.6, 82.2, 79.5, 73.0, 72.9, 68.3, 52.9, 26.7, 20.2.⁹
The protected propargyl alcohol (5.0 g, 11.7 mmol, 1.0 eq) was placed in tetrahydrofuran and a solution of tetrabutylammonium fluoride (35.1 mL, 1.0 M solution in tetrahydrofuran, 35.1 mmol, 3.0 eq) was added. The solution was stirred overnight and an equal volume of water was added. The mixture was extracted 3x with ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and evaporated. The residue was purified by column chromatography (3:1 hexanes/ethyl acetate) to give the alcohol in 76% yield. \(^\text{1}^H\text{ NMR (300 MHz, CDCl}_3\text{)} \delta 7.3(\text{m, 5H}), 4.6(\text{s, 2H}), 4.2(\text{m, 2H}), 3.6(\text{t, 2H}), 2.55(\text{m, 2H}), 2.0(\text{br s, 1H}); \text{ } ^{13}\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 137.9, 128.4, 127.7, 83.0, 79.5, 72.9, 68.2, 51.2, 20.1.\text{)^{10}}

The propargylic alcohol (2.0 g, 10.5 mmol, 1.0 eq) was placed in ethyl acetate and 500 mg of Lindlar’s catalyst added. The reaction was stirred at rt for 6 h under an atmosphere of hydrogen and the mixture filtered through a pad of Celite. The filtrate was evaporated and the residue purified by column chromatography to give the allylic alcohol in 98% yield. \(^\text{1}^H\text{ NMR (300 MHz, CDCl}_3\text{)} \delta 7.3(\text{m, 5H}), 5.8(\text{m, 1H}), 5.6(\text{m, 1H}), 4.5(\text{s, 2H}), 4.1(\text{m, 2H}), 3.5(\text{t, 2H}), 3.1(\text{br s, 1H}), 2.4(\text{dd, 2H}); \text{ } ^{13}\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 137.7, 130.7, 128.6, 128.2, 127.5, 127.46, 72.8, 68.9, 57.4, 27.7.\text{)^{11}}

The allylic alcohol (0.4 g, 2.1 mmol, 1.0 eq) was dissolved in 10 mL of dry acetonitrile and treated with Chloramine T (0.47 g, 2.1 mmol, 1.0 eq) and NBS (74.0 mg, 0.41 mmol, 0.2 eq). The light yellow slurry was stirred at rt overnight and then diluted with an equal volume of water. The aqueous was extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles removed by rotary evaporation. The residue was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the desired aziridinol in 78% yield. \(^\text{1}^H\text{ NMR (300 MHz, CDCl}_3\text{)} \delta 7.8(\text{d, 2H, J = 8.0 Hz}), 7.2-7.4(\text{m, 7H}), 4.4(\text{s, 2H}), 3.65(\text{m, 1H}), 3.4-3.6(\text{m, 3H}), 2.8-3.0(\text{m, 3H}), 2.4(\text{s, 3H}), 1.7-1.9(\text{m, 2H}); \text{ } ^{13}\text{C NMR (75 MHz, CDCl}_3\text{)} \delta 144.6, 136.9, 134.7, 129.7, 128.6, 128.4, 128.2, 127.9, 73.6, 67.3, 58.7, 43.7, 42.2, 27.1, 21.6. \text{HRMS [M + H] }^\text{+ calculated: 362.1426; observed: 362.1433.}

Preparation of 10a.
A suspension of NaH (44.5 mg as a 60% dispersion in mineral oil, 1.1 mmol, 4.0 eq) in 3 mL of dry THF was treated with the aziridinol (0.1 g, 0.28 mmol, 1.0 eq). The reaction was stirred at rt for 4 h, cooled to 0 °C and quenched with saturated ammonium chloride. The aqueous was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the desired amino epoxide in 86% yield. 1H NMR (300 MHz, CDCl3) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 5.15 (d, 1H, J = 8.2 Hz), 4.3 (d, 2H, J = 16.5 Hz), 3.7 (m, 2H), 3.4 (m, 2H), 2.95 (dd, 1H, J = 6.3, 2.7 Hz), 2.6 (m, 1H), 2.4 (s, 3H), 1.8 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 143.2, 137.9, 137.8, 129.5, 128.3, 127.6, 127.5, 127.0, 126.9, 72.9, 66.5, 53.6, 50.9, 44.1, 32.8, 21.4. IR 3281 (NH), 1331, 1161 (SO2). HRMS [M + H]+ calculated: 362.1426; observed: 362.1415.

Preparation of 10b from epoxy amine 10a.

A suspension of NaH (33.5 mg as a 60% dispersion in mineral oil, 0.83 mmol, 6.0 eq) in DMSO (2 mL, 0.1 M in aziridinol) was treated with trimethylsulfoxonium iodide (0.18 g, 0.83 mmol, 6.0 eq) and the reaction stirred at rt for 30 min to give a milky-white solution. The epoxy amine 10a (50.0 mg, 0.14 mmol, 1.0 eq) was added to the ylide, stirred at rt for 30 min and heated to 85 °C for 24 h. The cooled reaction was quenched with 3 mL of saturated ammonium chloride and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles evaporated. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the desired pyrrolidine in 89% yield as a white solid. 1H NMR (300 MHz, CDCl3) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 4.5 (d, 2H, J = 16.4 Hz), 4.05 (m, 1H), 3.8 (dd, 1H, J = 4.4, 1.1 Hz), 3.4-3.6 (m, 2H), 3.3 (m, 1H), 2.4 (s, 3H), 2.2 (m, 1H), 2.65 (m, 2H), 1.35 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 143.1, 136.7, 134.2, 129.4, 128.3, 128.0, 127.7, 127.5, 127.1, 126.1, 73.3, 71.8, 67.1, 64.0, 46.5, 32.1, 30.3, 21.2. IR 3497 (br, OH), 1345, 1161 (SO2). HRMS [M + H]+ calculated: 376.1583; observed: 376.1591.

Preparation of 10b from aziridinol 10 (one-pot procedure).
Sodium hydride (90.0 mg as a 60% dispersion in mineral oil, 2.24 mmol, 8.0 eq, washed twice with pentane dried over sodium metal) was placed in a flame-dried flask and dry dimethyl sulfoxide (3 mL) was added via syringe. Trimethylsulfoxonium iodide (0.5 g, 2.24 mmol, 8.0 eq) was added in small portions over 20-30 min. After addition of the trimethylsulfoxonium iodide was complete, the reaction was stirred for an additional 30 min until the bubbling of the milk-white suspension ceased. The aziridinol (0.1 g, 0.28 mmol, 1.0 eq) dissolved in a small amount of DMSO was added dropwise and the reaction stirred at rt for 4 h, covered with aluminum foil and heated to 80-85 ºC for 36 h. The dark brown mixture was cooled and diluted with 2x volume of water and 1 mL of saturated ammonium chloride. The reaction was extracted several times with ethyl acetate, the combined organics were washed with brine and dried over sodium sulfate. After evaporation, the residue was column chromatographed using a hexane/ethyl acetate gradient to give compound 10b in 77% yield as a white solid.

\[\text{1H NMR (300 MHz, CDCl}_3) \delta 7.7 \text{ (d, 2H, } J = 8.2 \text{ Hz), 7.2-7.4 (m, 7H), 4.5 (d, 2H, } J = 16.4 \text{ Hz), 4.05 (m, 1H), 3.8 (dd, 1H, } J = 4.4, 1.1 \text{ Hz), 3.4-3.6 (m, 2H), 3.3 (m, 1H), 2.4 (s, 3H), 2.2 (m, 1H), 2.65 (m, 2H), 1.35 (m, 1H); \text{ 13C NMR (75 MHz, CDCl}_3) \delta 143.1, 136.7, 134.2, 129.4, 128.3, 128.0, 127.7, 127.5, 127.1, 126.1, 73.3, 71.8, 67.1, 64.0, 46.5, 32.1, 30.3, 21.2. \text{ IR 3497 (br, OH), 1345, 1161 (SO}_2). \text{ HRMS [M + H]}^+ \text{ calculated: 376.1583; observed: 376.1591.} \]

Preparation of 11 (racemic).

A suspension of NaH (4.0 g as a 60% dispersion in mineral oil, washed twice with dry pentane, 98.7 mmol, 1.0 eq) in 1 L of THF was treated with 1,3-propanediol (7.5 g, 98.7 mmol, 1.0 eq) dropwise. The reaction was stirred at rt for 30 min, and a solution of benzyl bromide (16.9 g, 98.7 mmol, 1.0 eq) dissolved in a small amount of THF was added dropwise. The reaction was stirred at reflux overnight, cooled and diluted with 500 mL of water. The mixture was extracted 3x with portions of diethyl ether, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified by column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 79% yield.
The monobenzylated alcohol (7.2 g, 43.5 mmol, 1.0 eq) was placed in 430 mL of dichloromethane and cooled to 0 ºC. Dess-Martin periodane (20.3 g, 39 mmol, 1.1 eq) and pyridine (10.3 g, 130.5 mmol, 3.0 eq) were added and the reaction stirred for 3 h at 15 ºC. The carboxyethyltriphenylphosphonium bromide (1.5 eq) was added and the reaction was stirred at rt for 18 h. The reaction was diluted with twice the volume of diethyl ether and the solids filtered. The volatiles were evaporated from the filtrate and the residue purified by column chromatography (9:1 hexanes/ethyl acetate) to give the desired acrylate in 79% yield over the two steps.12

The ester (8.0 g, 34.2 mmol, 1.0 eq) was placed in 350 mL dry tetrahydrofuran and cooled to -20 ºC. Diisobutylaluminum hydride (57 mL, 85.5 mmol as a 1.5 M solution in toluene, 2.5 eq) was added dropwise and the reaction stirred at -20 ºC for 3 h. The reaction was carefully quenched with saturated Rochelle’s salt and then glycerol (0.2 mL/mmol DIBAL) was added and the reaction was stirred overnight to break up the aluminum complex. The phases were separated and the aqueous layer was washed several times with ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate, and the solvent was removed under reduced pressure. The residue was purified via column chromatography (hexanes/ethyl acetate gradient) to give the allylic alcohol in 97% yield. 1H NMR (300 MHz, CDCl3) δ 7.3 (m, 5H), 5.7 (m, 2H), 4.5 (s, 2H), 4.0 (m, 2H), 3.5 (t, 2H), 2.35 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 138.3, 131.0, 129.1, 128.3, 127.6, 127.5, 72.9, 69.6, 63.5, 32.6.13

The allylic alcohol (1.2 g, 6.2 mmol, 1.0 eq) was dissolved in 25 mL of dry acetonitrile and treated with anhydrous Chloramine-T (1.4 g, 6.2 mmol, 1.0 eq) and NBS (0.22 g, 1.2 mmol, 0.2 eq). The light yellow slurry was stirred at rt overnight and then diluted with an equal volume of water. The aqueous layer was extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified via column chromatography (3:1 hexanes/ethyl acetate) to give the desired aziridinol in 70% yield. 1H NMR (300 MHz, CDCl3) δ 7.75 (d, 2H, J = 8.2 Hz), 7.2-7.3 (m, 7H), 4.35 (s, 2H), 3.9 (m, 1H), 3.8 (m, 1H), 3.2-3.4 (2 m, 2H), 3.1 (m, 1H), 2.95 (m, 1H), 2.6 (t, 1H, J = 7.3 Hz), 2.4 (s, 3H), 2.0 (m, 1H), 1.75 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 144.3, 138.0, 136.9, 129.6, 128.4, 127.7, 127.5, 127.3, 73.0, 67.4, 60.9, 51.5, 44.1, 30.6, 21.6. IR 3517 (br s, OH), 1597 (aromatic), 1319, 1159 (SO2). HRMS [M + H]+ calculated: 362.1426; observed: 362.1418.

Preparation of 11a.
A suspension of NaH (0.11 g as a 60% dispersion in mineral oil, 2.77 mmol, 4.0 eq) in 7 mL of dry THF was treated with the aziridinol (0.25 g, 0.69 mmol, 1.0 eq). The reaction was stirred at rt for 4 h, cooled to 0 °C and quenched with saturated ammonium chloride. The aqueous was extracted 3x with portions of ethyl acetate, the combined organics washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the desired amino epoxide in 87% yield. 1H NMR (300 MHz, CDCl₃) δ 7.65 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 5.8 (d, 1H, J = 5.8 Hz), 4.4 (2 s, 2H), 3.6 (m, 1H), 3.4 (m, 1H), 3.0 (m, 1H), 2.8 (m, 1H), 2.65 (m, 1H), 2.6 (m, 1H), 2.4 (s, 3H), 1.8 (br m, 2H); 13C NMR (75 MHz, CDCl₃) δ 143.5, 137.6, 137.4, 129.5, 128.5, 127.8, 127.6, 127.0, 73.3, 54.8, 53.3, 47.6, 31.0, 21.4. IR 3279 (NH), 1331, 1161 (SO₂). HRMS [M + H]+ calculated: 362.1426; observed: 362.1420. The reaction could also be performed by stirring the aziridinol with dimethylsulfoxonium methylide in DMSO overnight. The desired epoxy amine 11a was obtained in 86% yield.

Preparation of 11b from epoxy amine 11a.

A suspension of NaH (33.5 mg as a 60% dispersion in mineral oil, 0.83 mmol, 6.0 eq) in DMSO (2 mL, 0.1 M in aziridinol) was treated with trimethylsulfoxonium iodide (0.18 g, 0.83 mmol, 6.0 eq) and the reaction was stirred at rt for 30 min to give a milky-white solution. The epoxy amine 11a (50.0 mg, 0.14 mmol, 1.0 eq) was added to the ylide, stirred at rt for 30 min and heated to 85 °C for 24 h. The cooled reaction was quenched with 3 mL of saturated ammonium chloride and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the desired pyrrolidine in 85% yield as a thick oil. 1H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 4.5 (dd, 2H, J = 17.6, 11.8 Hz), 4.05 (br m, 1H), 3.6 (dd, 2H, J = 6.6, 4.9 Hz), 3.2-3.4 (m, 3H), 2.4 (s, 3H), 2.35 (br d, 2H, J = 2.5 Hz), 2.2 (m, 1H), 1.9 (m, 1H), 1.8 (m, 1H), 1.5 (m, 1H); 13C NMR (75 MHz, CDCl₃) δ 143.5, 137.7, 133.9, 129.6, 128.5, 127.8, 127.7, 76.0, 73.1, 67.9, 67.3, 46.6, 35.2, 31.7, 21.5. IR 3513 (br, OH), 3379, 3159 (SO₂). HRMS [M + H]+ calculated: 376.1583; observed: 376.1584.

Preparation of 11b from aziridinol 11 (one-pot procedure).
A suspension of NaH (0.22 g as a 60% dispersion in mineral oil, 5.54 mmol, 8.0 eq) in 7 mL of dry DMSO was treated with portions of trimethylsulfonium iodide (1.22 g, 5.54 mmol, 8.0 eq) and the milky suspension was stirred for 30 min at rt. The aziridinol (0.25 g, 0.69 mmol, 1.0 eq) was added and the reaction was stirred at rt for a further 4 h to complete the aza-Payne rearrangement. The solution was then heated to 80 °C for 36 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 71% yield. 1H NMR (300 MHz, CDCl3) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 4.5 (dd, 2H, J = 17.6, 11.8 Hz), 4.05 (br m, 1H), 3.6 (dd, 2H, J = 6.6, 4.9 Hz), 3.2-3.4 (m, 3H), 2.4 (s, 3H), 2.35 (br d, 1H, J = 2.5 Hz), 2.2 (m, 1H), 1.9 (m, 1H), 1.8 (m, 1H), 1.5 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 143.5, 137.7, 133.9, 129.6, 128.5, 127.8, 127.7, 76.0, 73.1, 67.9, 67.3, 46.6, 35.2, 31.7, 21.5. IR 3513 (br, OH), 1337, 1159 (SO2). HRMS [M + H]+ calculated: 376.1583; observed: 376.1584.

The epoxy amine 11a was treated with 8.0 eq of dimethylsulfoxonium methylide as a 0.1 M solution in DMSO and stirred at 70 °C for 24 h. Typical workup and purification yielded the methoxy-protected secondary alcohol instead of the expected product in 85% yield. 1H NMR (300 MHz, CDCl3) δ 7.7 (d, 2H, J = 8.0 Hz), 7.1-7.4 (overlapping m, 7H), 4.5 (d, 1H, J = 11.5 Hz), 4.45 (d, 1H, J = 11.5 Hz), 4.05 (br m, 1H), 3.6 (m, 2H), 3.2-3.5 (overlapping m, 3H), 2.95 (s, 3H), 2.4 (s, 3H), 2.2 (m, 1H), 1.9 (m, 1H), 1.8 (m, 1H), 1.5 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 143.4, 137.7, 133.9, 129.5, 128.4, 127.8, 127.7, 127.6, 75.9, 73.1, 67.8, 67.2, 46.5, 42.5, 35.1, 31.7, 21.5.

Preparation of 12.

A solution of methyl-2-nonynoate (2.5 g, 14.9 mmol, 1.0 eq) was placed in dry dichloromethane (75 mL) and cooled to -78 °C. DIBAL (32.7 mL as a 1.0 M solution, 32.7 mmol, 2.2 eq) was added dropwise and allowed to stir for 15 min and then warmed to rt. A saturated solution of Rochelle’s salt (100 mL) was carefully added, followed by
0.5 mL glycerol/mmol DIBAL. The biphasic system was stirred at rt for 6 h. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine and dried over sodium sulfate. The crude product was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the alcohol in 80% yield. 1H NMR (300 MHz, CDCl$_3$) δ 4.45 (d, 2H), 2.60 (br s, 1H), 2.40 (m, 2H), 1.50 (m, 2H), 1.2-1.45 (m, 6H), 0.78 (t, 3H, J = 6.6 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 86.0, 78.0, 51.0, 31.2, 28.5, 28.4, 22.4, 18.6, 13.9.14

The alcohol from above (2.2 g, 11.6 mmol, 1.0 eq) was placed in ethyl acetate and 5 drops of chloroform. Lindlar’s catalyst (550 mg) was added and the flask was evacuated and filled with 1 atmosphere of hydrogen using a balloon. The suspension was stirred at rt for 5 h, the catalyst was removed via filtration through a pad of celite and the filtrate was evaporated under reduced pressure. The crude product was obtained in quantitative yield and was not further purified. The crude product (1.23 g, 6.45 mmol, 1 eq) was taken in acetonitrile (30 mL). Anhydrous Chloramine-T (1.47g, 6.45 mmol) and N-bromosuccinimide (0.231g, 1.29 mmol) were successively added and allowed to stir overnight. The reaction mixture was washed with water. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine and dried over sodium sulfate. The crude product was purified via column chromatography (3:1 hexanes/ethyl acetate) to give the aziridinol in 45% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.8 (d, 2H, J = 8.2 Hz), 7.3 (d, 2H, J = 8.0 Hz), 3.7 (m, 1H), 3.55 (m, 1H), 3.0 (dd, 1H), 2.7 (dd, 1H), 2.4 (s, 3H), 1.4 (m, 2H), 1.0-1.3 (br m, 8H), 0.8 (t, 3H, J = 6.8 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 144.5, 134.5, 129.6, 128.0, 126.3, 128.0, 126.3, 59.2, 44.9, 31.4, 28.6, 27.1, 26.7, 22.3, 21.5, 13.9. IR 3517 (br, OH), 1334, 1159 (SO$_2$). HRMS [M + H]$^+$ calculated: 312.1633; observed: 312.1627.

Preparation of 12a.

A suspension of NaH (51.8 mg as a 60% dispersion in mineral oil, 1.29 mmol, 4.0 eq) in 3.2 mL of dry THF was treated with the aziridinol (0.1 g, 0.32 mmol, 1.0 eq). The reaction was stirred at rt for 4 h, cooled to 0 °C and quenched with saturated ammonium chloride. The aqueous layer was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the desired amino epoxide in 84% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.8 (d, 2H, J = 8.2 Hz), 7.2 (d, 2H, J = 8.2 Hz),
Preparation of 12b from epoxy amine 12a.

The aza-Payne rearranged epoxy amine (0.05 g, 0.16 mmol, 1.0 eq) was treated with 6.0 eq of dimethylsulfoxonium methyldide as a 0.1 M solution in DMSO. The reaction was stirred at rt for 4 h, then heated to 80 °C for 24 h. Following typical workup and purification, the desired pyrrolidine was obtained in 92% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.75 (d, 2H, $J = 8.2$ Hz), 7.25 (d, 2H, $J = 8.2$ Hz), 4.0 (dd, 1H, $J = 9.8, 4.9$ Hz), 3.3-3.6 (overlapping m, 4H), 2.4 (s, 3H), 1.6-1.9 (overlapping m, 3H), 1.5 (m, 1H), 1.2-1.4 (br m, 8H), 0.8 (t, 3H, $J = 6.8$ Hz); 13C NMR (75 MHz, CDCl$_3$) δ 143.4, 134.7, 129.6, 127.4, 71.6, 64.1, 46.3, 32.5, 31.7, 29.4, 29.3, 29.2, 22.6, 21.5, 14.0.

Preparation of 12b from aziridinol 12 (one-pot procedure).

The ylide was prepared from 8.0 eq of NaH and 8.0 eq of trimethylsulfoxonium iodide as a 0.1 M solution in DMSO. The aziridinol 12 (0.1 g, 0.4 mmol, 1.0 eq) was added and the reaction was stirred for 4 h at rt, then 80 °C for 24 h. The reaction was diluted with 2x volume of water and extracted several times with ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified via column chromatography using a hexane/ethyl acetate gradient (9:1 hexane/ethyl acetate to 1/1 hexane/ethyl acetate) to give the product in 79% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.75 (d, 2H, $J = 8.2$ Hz), 7.25 (d, 2H, $J = 8.2$ Hz), 4.0 (dd, 1H, $J = 9.8, 4.9$ Hz), 3.3-3.6 (overlapping m, 4H), 2.4 (s, 3H), 1.6-1.9 (overlapping m, 3H), 1.5 (m, 1H), 1.2-1.4 (br m, 8H), 0.8 (t, 3H, $J = 6.8$ Hz); 13C NMR (75 MHz, CDCl$_3$) δ 143.4, 134.7, 129.6, 127.4, 71.6, 64.1, 46.3, 32.5, 31.7, 29.4, 29.3, 29.2, 22.6, 21.5, 14.0. IR 3517 (br, OH), 1337, 1159 (SO$_2$). HRMS calculated: 325.1712; observed: 325.1722.
The allylic alcohol (5.0 g, 32.0 mmol, 1.0 eq) was dissolved in 320 mL of dichloromethane and treated with mCBPA (7.9 g as a 77 wt % solid, 35.2 mmol, 1.1 eq). The reaction was stirred overnight at rt and washed 3x with portions of saturated sodium carbonate. The combined aqueous layers were back-extracted with dichloromethane and the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The crude solid (99% yield) was used without further purification. 1H NMR (300 MHz, CDCl$_3$) δ 3.8 (dd, 1H), 3.5 (dd, 1H), 2.9 (m, 2H), 2.6 (br s, 1H), 1.1-1.6 (several m, 12H), 0.8 (m, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 61.7, 58.6, 56.0, 31.6, 31.5, 29.2, 29.1, 25.8, 22.5, 14.0.8

The epoxy alcohol (5.2 g, 32.0 mmol, 1.0 eq) was dissolved in 130 mL of dry DMF and treated with TBSCl (5.1 g, 33.6 mmol, 1.05 eq) and imidazole (5.4 g, 80.0 mmol, 2.5 eq). The reaction was stirred overnight at rt, diluted with 250 mL of water and the aqueous extracted 3x with portions of diethyl ether. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The crude material was used directly in the next step. 1H NMR (300 MHz, CDCl$_3$) δ 3.7 (dd, 1H), 3.55 (dd, 1H), 2.7 (m, 2H), 1.1-1.5 (br m, 12H), 0.8 (s, 9H), -0.1 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 63.5, 58.4, 53.7, 31.6, 31.3, 29.2, 29.0, 25.7, 18.2, 13.9, -5.4, -5.5.

The silylated epoxide (1.0 eq, 32.0 mmol) was placed in 120 mL of 8:1 2-methoxyethanol:water. Sodium azide (10.4 g, 5.0 eq, 160 mmol) was added followed by ammonium chloride (3.4 g, 2.0 eq, 64.0 mmol). The reaction was heated to reflux for 3 h and the volatiles were removed via rotary evaporation. The resultant solid was extracted with 3 portions of chloroform and the combined organics were washed with a small amount of brine. The chloroform was dried over sodium sulfate and the organics were removed via rotary evaporation followed by drying on a vacuum line overnight. The crude material was resilylated using standard conditions to give the product in 61% yield. 1H NMR (300 MHz, CDCl$_3$) δ 3.85 (d, 0.3H), 3.5-3.75 (m, 2.7 H), 3.3 (m, 1H), 2.5 (br m, 1.0 H), 1.2-1.7 (several br m, 12H), 0.9 (s and t, 12H), 0.1 (s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 73.4, 72.1, 66.5, 63.8, 63.7, 63.5, 33.5, 31.7, 30.4, 29.5, 29.4, 29.2, 29.1, 26.2, 25.8, 25.7, 25.6, 22.6, 18.2, 14.1, -5.5, -5.7.
The azido alcohol (2.5 g, 7.6 mmol, 1.0 eq) was dissolved in 80 mL of THF and treated
with triphenylphosphine (2.2 g, 8.4 mmol, 1.1 eq). The reaction was heated to reflux for
4 h, then cooled to 0 °C. Toluenesulfonyl chloride (2.2 g, 11.4 mmol, 1.5 eq) and
triethylamine (1.6 mL, 11.4 mmol, 1.5 eq) were added and the reaction was stirred
overnight at rt. Saturated sodium bicarbonate was added and the mixture was stirred
vigorously for 30 min. The aqueous layer was extracted 3x with portions of ethyl acetate,
the combined organics were washed with brine, dried over sodium sulfate and the
volatiles were removed via rotary evaporation. The residue was purified using column
chromatography (9:1 hexanes/ethyl acetate) to give the product in 88% yield. 1H NMR
(300 MHz, CDCl3) δ 7.8 (d, 2H), 7.2 (d, 2H), 3.6-3.8 (m, 2H), 2.8 (dd, 1H), 2.6 (m, 1H),
2.4 (s, 3H), 1.2-1.8 (br m, 12H), 0.95 (t, 3H), 0.9 (s, 9H), -0.1 (s, 6H); 13C NMR (75
MHz, CDCl3) δ 143.7, 137.7, 129.4, 127.4, 61.9, 49.3, 47.9, 31.6, 29.2, 29.1, 29.0, 27.6,
25.8, 25.7, 22.6, 21.5, 18.2, 14.0, -5.5.

The aziridine (4.2 g, 9.6 mmol, 1.0 eq) was dissolved in 100 mL of dry THF and cooled
to -78 °C. TBAF (10.6 mL of a 1 M solution in THF, 10.6 mmol, 1.1 eq) was added and
the reaction was stirred for 30 min, then warmed slowly to 0 °C, stirred for an additional
30 min and quenched with saturated sodium bicarbonate. The aqueous layer was
extracted 3x with portions of ethyl acetate. The combined organics were washed with
brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation.
The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to
give the product in 58% yield. 1H NMR (300 MHz, CDCl3) δ 7.8 (d, 2H, J = 8.2 Hz),
7.25 (d, 2H, J = 8.2 Hz), 4.05 (m, 1H), 3.85 (m, 1H), 2.9 (m, 2H), 2.4 (s, 3H), 1.6 (m,
1H), 1.4 (m, 1H), 1.0-1.3 (br m, 10H), 0.8 (t, 3H, J = 6.9 Hz); 13C NMR (75 MHz,
CDCl3) δ 144.2, 137.1, 129.6, 127.3, 127.1, 60.9, 51.8, 46.5, 31.5, 30.2, 29.0, 28.8, 27.1,
22.6, 21.6, 14.0. IR 3520 (br, OH), 1321, 1159 (SO2). HRMS [M + H]⁺ calculated:
326.1790; observed: 326.1791.

Preparation of 13a.

The ylide was prepared from 8.0 eq of NaH and 8.0 eq of trimethylsulfoxonium iodide as
a 0.1 M solution in DMSO. The aziridinol (0.1 g, 0.308 mmol, 1.0 eq) was added and the
reaction was stirred for 36 h at rt. The aza-Payne rearranged material was obtained in
86% yield. 1H NMR (300 MHz, CDCl3) δ 7.75 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.2
Hz), 5.0 (d, 1H, J = 7.4 Hz), 2.9 (m, 1H), 2.75 (m, 1H), 2.6 (dd, 1H, J = 4.7, 3.8 Hz), 2.5
(dd, 1H, J = 4.7, 2.5 Hz), 2.4 (s, 3H), 1.55 (m, 1H), 1.4 (m, 1H), 1.0-1.3 (br, 10H), 0.8 (t,
3H, J = 7.1 Hz); 13C NMR (75 MHz, CDCl3) δ 143.4, 137.7, 129.6, 127.0, 55.3, 54.0,
46.7, 32.4, 31.6, 29.1, 28.9, 24.9, 22.5, 21.4, 14.0. IR 3279 (NH), 1329, 1161 (SO₂).
HRMS [M + H]+ calculated: 326.1790; observed: 326.1784.

Preparation of 13b from epoxy amine 13a.

The aza-Payne rearranged epoxy amine (0.1 g, 0.31 mmol, 1.0 eq) was treated with 8.0 eq of dimethylsulfoxonium methylide as a 0.1 M solution in DMSO. The reaction was stirred at rt for 4 h, then heated to 80 °C for 24 h. Following typical workup and purification, the desired pyrrolidine was obtained in 95% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.0 Hz), 4.0 (br m, 1H), 3.4 (m, 2H), 3.2 (m, 1H), 2.4 (s, 3H), 2.0 (m, 1H), 1.7 (m, 2H), 1.1-1.4 (br m, 11H), 0.8 (t, 3H, J = 7.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 134.2, 129.6, 127.7, 74.6, 69.2, 46.2, 35.1, 32.3, 31.7, 29.4, 29.1, 26.2, 21.5, 14.0. IR 3517 (br, OH), 1334, 1159 (SO₂). HRMS calculated: 339.1868; observed: 339.1863.

Occasionally, the methylated amine could be isolated from this reaction if there was excess trimethylsulfoxonium iodide present and the reaction temperature was not sufficiently high. ¹H NMR (300 MHz, CDCl₃) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2 (d, 2H, J = 8.0 Hz), 3.7 (m, 1H), 2.8 (s, 3H), 2.75 (m, 1H), 2.6 (m, 1H), 2.5 (dd, 1H, J = 4.7, 2.5 Hz), 2.35 (s, 3H), 1.4 (m, 2H), 1.0-1.3 (br m, 10H), 0.8 (t, 3H, J = 6.8 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 129.6, 129.5, 127.0, 58.2, 52.9, 45.1, 31.6, 29.4, 29.2, 29.0, 27.3, 25.8, 22.6, 21.4, 14.0.

Preparation of 13b from aziridinol 13.

A suspension of NaH (0.1 g as a 60% dispersion in mineral oil, 2.48 mmol, 8.0 eq) in 3.5 mL of dry DMSO was treated with portions of trimethylsulfoxonium iodide (0.55 g, 2.48 mmol, 8.0 eq) and the milky suspension was stirred for 30 min at rt. The aziridinol (0.1 g, 0.31 mmol, 1.0 eq) was added and the reaction was stirred at rt for a further 4 h to complete the aza-Payne rearrangement. The solution was then heated to 80 °C for 36 h,
cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 71% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.7 (d, 2H, $J = 8.2$ Hz), 7.25 (d, 2H, $J = 8.0$ Hz), 4.0 (br m, 1H), 3.4 (m, 2H), 3.2 (m, 1H), 2.4 (s, 3H), 2.0 (m, 1H), 1.7 (m, 2H), 1.1-1.4 (br m, 11H), 0.8 (t, 3H, $J = 7.8$ Hz); 13C NMR (75 MHz, CDCl$_3$) δ 143.3, 134.2, 129.6, 127.7, 74.6, 69.2, 46.2, 35.1, 32.3, 31.7, 29.4, 29.1, 26.2, 21.5, 14.0. IR 3517 (br, OH), 1334, 1159 (SO$_2$). HRMS calculated: 339.1868; observed: 339.1863.

Preparation of 14 (enantiomerically pure).15

The aziridine ester (50.0 mg, 0.26 mmol, 1.0 eq) was placed in 1.3 mL of dry THF and cooled to -40 °C. A 1 M solution of LAH (19.7 mg, 0.52 mmol, 2.0 eq in 0.5 mL of THF) in THF was added dropwise over 10 min and stirred at 0 °C for 1 h until the TLC showed disappearance of starting material. The suspension was carefully quenched with 26 µL of water, then 26 µL of 0.15 M NaOH. The reaction was stirred for 30 min, the white solid was filtered and washed with several portions of ethyl acetate. The filtrate was evaporated and the residue was purified by column chromatography (2:1 ethyl acetate/hexane to 2:1:0.1 ethyl acetate/hexane/methanol) to give the desired aziridine in 65% yield. 1H (300 MHz, CDCl$_3$) δ 7.3 (m, 5H), 3.40 (d, $J = 6.6$ Hz, 1H), 3.35 (dd, $J = 11.8, 5.2$ Hz, 1H), 3.17 (dd, $J = 12.0, 7.4$ Hz, 1H), 2.6 (m, 1H), 1.7 (br s, 2H) 13C NMR (75 MHz, CDCl$_3$) δ 136.5, 128.1, 127.4, 126.9, 61.2, 37.8, 36.7.

Triethylamine (0.21 mL, 1.5 mmol, 2 eq) was added dropwise to a stirred suspension of the aziridinol (0.11 g, 0.75 mmol, 1 eq) and p-toluenesulfonyl chloride (0.14 g, 0.75 mmol, 1 eq) in a mixed solvent of CHCl$_3$-CH$_2$Cl$_2$ (1:1, 2 mL) at 0 °C under nitrogen. The mixture was stirred at 0 °C for 48 h. It was then cooled to -20 °C, and 1 mL of saturated NH$_4$Cl solution was added dropwise with vigorous stirring. The mixture was quenched with water and the aqueous layer was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine and dried over sodium sulfate. The crude product was purified via column chromatography (8:2 hexanes/ethyl acetate) to afford the desired product in 90% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.8 (d, 2H, $J = 8.2$ Hz), 7.35 (d, 2H, $J = 8.2$ Hz), 7.15-7.3 (m, 5H), 4.0 (d, 1H, $J = 6.9$ Hz), 3.5 (m, 1H), 3.2-3.4 (m, 2H), 2.4 (s, 3H), 1.8 (br s, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 144.9, 134.3, 132.1, 129.8, 128.4, 128.1, 128.0, 127.2, 59.3, 45.8, 45.3, 21.6. IR 3520 (br, OH), 1597
(aromatic), 1321, 1157 (SO₂). HRMS [M + H]⁺ calculated: 304.1007; observed: 304.1016.¹⁵

Preparation of 14a.⁶

\[
\begin{align*}
\text{Ph} & \quad \text{NHTs} \\
\text{O} & \quad \text{Ph}
\end{align*}
\]

A suspension of NaH (53.0 mg, 1.32 mmol, 4.0 eq) in 3.5 mL of THF was treated with the aziridinol (0.1 mg, 0.33 mmol, 1.0 eq) and stirred at rt for 4 h, cooled to 0 °C and carefully diluted with an equal amount of saturated ammonium chloride. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 85% yield. JSXV92A ¹H NMR (300 MHz, CDCl₃) δ 7.5 (d, 2H, J = 8.2 Hz), 7.0-7.2 (m, 7H), 5.05 (d, 1H, J = 8.0, 2.7 Hz), 3.2 (m, 1H), 2.8 (dd, 1H, J = 4.7, 2.7 Hz), 2.7 (m, 1H), 2.4 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 138.1, 137.5, 129.3, 128.6, 128.0, 127.0, 56.8, 54.4, 44.4, 21.4. IR 3270 (NH), 1318, 1165 (SO₂). HRMS [M + H]⁺ calculated: 304.1007; observed: 304.1003.

Preparation of 14b from epoxy amine 14a.

The dimethylsulfoxonium methylide was formed as previously described from NaH (0.11 g as a 60% dispersion in mineral oil, 2.64 mmol, 8.0 eq) and trimethylsulfoxonium iodide (0.58 g, 2.64 mmol, 8.0 eq) in 3.5 mL of dry DMSO. The amino epoxide (0.1 g, 0.33 mmol, 1.0 eq) was added and the reaction was heated to 80 °C for 24 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 88% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.6 (d, 2H, J = 8.2 Hz), 7.2-7.3 (m, 7H), 4.6 (d, 1H, J = 5.8 Hz), 4.1 (m, 1H), 3.7 (m, 1H), 3.55 (m, 1H), 2.4 (s, 3H), 1.8 (m, 1H), 1.65 (m, 1H), 1.2 (br s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5, 136.4, 134.6, 129.6, 128.4, 127.9, 127.7, 127.4, 73.4, 67.4, 47.0, 32.1, 21.5.

Preparation of 14b from aziridinol 14 (one-pot procedure).
The dimethylsulfoxonium methylide was formed as previously described from NaH (0.11 g as a 60% dispersion in mineral oil, 2.64 mmol, 8.0 eq) and trimethylsulfoxonium iodide (0.58 g, 52.64 mmol, 8.0 eq) in 3.3 mL of dry DMSO. The aziridinol (0.1 g, 0.33 mmol, 1.0 eq) was added and the reaction was stirred at rt for 6 h and heated to 80 °C for 24 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 79% yield.

\[
\text{1H NMR (300 MHz, CDCl}_3) \delta 7.6 (d, 2H, J = 8.2 Hz), 7.2-7.3 (m, 7H), 4.6 (d, 1H, J = 5.8 Hz), 4.1 (m, 1H), 3.7 (m, 1H), 3.55 (m, 1H), 2.4 (s, 3H), 1.8 (m, 1H), 1.65 (m, 1H), 1.2 (br s, 1H); \text{13C NMR (75 MHz, CDCl}_3) \delta 143.5, 136.4, 134.6, 129.6, 128.4, 127.9, 127.7, 127.4, 73.4, 67.4, 47.0, 32.1, 21.5. \text{IR 3522 (br, OH), 1337, 1159 (SO}_2). \text{HRMS calculated: 317.1086; observed: 317.1085.}
\]

Preparation of the MPA ester of 14b.

The alcohol (25.0 mg, 0.079 mmol, 1.0 eq) was dissolved in 1 mL of dry dichloromethane and treated with (S)-(+)−methoxyphenylacetic acid (14.4 mg, 0.087 mmol, 1.1 eq), dicyclohexyl carbodiimide (17.9 mg, 0.087 mmol, 1.1 eq) and a catalytic amount of DMAP. The reaction was stirred overnight at rt and diluted with more dichloromethane. The organics were washed with dilute HCl, saturated sodium bicarbonate and brine, dried over sodium sulfate and the volatiles were evaporated. The crude NMR showed one major diastereomer and an ee of 94% for the pyrrolidine. \text{1H NMR (300 MHz, CDCl}_3) \delta 7.6 (d, 2H), 6.95-7.25 (m, 12H), 5.1 (dd, 1H), 4.8 (d, 1H), 4.4 (s, 1H), 3.65 (m, 1H), 3.5 (m, 1H), 3.05 (s, 3H), 2.4 (s, 3H), 1.8-2.0 (m, 2H); \text{13C (75 Mz, CDCl}_3) \delta 169.8, 143.7, 136.2, 135.4, 134.4, 129.7, 128.7, 128.6, 128.5, 127.9, 127.7, 127.5, 127.0, 82.3, 75.1, 64.9, 57.1, 46.2, 21.5.

Preparation of 15.
Cinnamyl alcohol (5.3 g, 39.7 mmol, 1 eq) was placed in acetonitrile (150 mL), and chloramine-T (9.04 g, 39.7 mmole) and N-bromoacetamide (1.41 g, 7.9 mmole) were added successively and allowed to stir overnight. The reaction mixture was washed with water. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine and dried over magnesium sulfate. The crude product was purified via column chromatography (hexanes/ethyl acetate) to give the aziridine alcohol 20 in 67% yield. 1H-NMR (300 MHz, CDCl₃) δ 7.81-7.85 (2H, m), 7.26-7.29 (5H, m), 7.13-7.16 (2H, m), 4.32 (1H, ddd, J=13.3, 9.8, 3.2 Hz), 4.19 (1H, ddd, J=13.3, 8.4, 4.9 Hz), 4.02 (1H, d, J=4.4Hz), 3.19 (1H, ddd, J=8.4, 4.4, 3.1 Hz), 3.15 (1H, dd, J=9.8, 4.9 Hz), 2.40 (3H, s). 13C NMR (75 MHz, CDCl₃) δ 129.7, 128.6, 128.4, 127.1, 126.4, 60.7, 54.7, 46.3, 21.6. HRMS [M + H]^+ calculated: 304.1007; observed: 304.1012.

Preparation of 15a.

The aziridinol (1.0 g, 3.3 mmol, 1.0 eq) was dissolved in 30 mL of dry tetrahydrofuran, cooled to 0 °C and treated with NaH (0.53 g as a 60% dispersion in mineral oil, 13.2 mmol, 4.0 eq). The reaction was slow and so it was warmed to rt and stirred for an additional 4 h. The reaction was cooled back to 0 °C and quenched carefully with a saturated solution of ammonium chloride. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified via column chromatography (9:1 hexanes/ethyl acetate) to give the desired epoxy amine in 79% yield. 1H NMR (300 MHz, CDCl₃) δ 7.6 (d, 2H, J = 8.2 Hz), 7.0-7.2 (m, 7H), 5.9 (d, 1H, J = 6.3 Hz), 4.3 (dd, 1H, J = 7.1, 5.2 Hz), 3.2 (m, 1H), 2.6 (overlapping dd, 1H, J = 4.7, 3.8 Hz), 2.4 (dd, 1H, J = 4.7, 2.7 Hz), 2.3 (s, 3H); 13C NMR δ (75 MHz, CDCl₃) 143.1, 137.2, 136.2, 129.2, 128.3, 127.9, 127.2, 126.9, 58.1, 53.8, 45.7, 21.3. IR 3276 (NH), 329, 1161 (SO₂). HRMS [M + H]^+ calculated: 304.1007; observed: 304.1012.

The trimethylsulfoxonium methylide could also be used to induce aza-Payne rearrangement. The aziridinol (0.1 g, 0.33 g, 1.0 eq) was treated with 8.0 eq of a 0.1 M solution of trimethylsulfoxonium methylide in DMSO and stirred at rt for 36 h. The aza-Payne rearranged product was formed in 56% yield along with a 27% yield of the desired pyrrolidine.

Preparation of 15b from epoxy amine 15a.
The dimethylsulfoxonium methylide was formed as previously described from NaH (0.11 g as a 60% dispersion in mineral oil, 2.64 mmol, 8.0 eq) and trimethylsulfoxonium iodide (0.58 g, 2.64 mmol, 8.0 eq) in 3.5 mL of dry DMSO. The amino epoxide (0.1 g, 0.33 mmol, 1.0 eq) was added and the reaction stirred at rt for 4 h and heated to 80 °C for 24 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 71% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.7 (d, 2H, $J = 8.2$ Hz), 7.2 (m, 7H), 4.6 (s, 1H), 4.1 (m, 1H), 3.65 (m, 1H), 3.4 (m, 1H), 2.4 (s, 3H), 2.0 (m, 1H), 1.6 (m, 1H), 1.6 (br s, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 143.5, 139.8, 134.4, 129.5, 128.5, 127.7, 127.4, 126.1, 78.7, 71.8, 46.7, 31.2, 21.5.

Occasionally, the methylated amino epoxide could be isolated in 58% yield when excess trimethylsulfoxonium iodide was present or the reaction temperature was not sufficiently high to promote epoxide ring opening. 1H NMR (300 MHz, CDCl$_3$) δ 7.6 (d, 2H, $J = 8.0$ Hz), 7.2 (m, 7H), 4.6 (dd, 1H), 3.35 (m, 1H), 2.8 (s, 3H), 2.5 (m, 1H), 2.4 (overlapping s and m, 3H and 1H); 13C NMR (75 MHz, CDCl$_3$) δ 143.4, 136.7, 135.6, 129.6, 128.5, 128.0, 127.2, 61.7, 51.7, 46.2, 31.1, 21.5.

Preparation of 15b from aziridinol 15 (one-pot procedure).

The dimethylsulfoxonium methylide was formed as previously described from NaH (0.27 g as a 60% dispersion in mineral oil, 6.64 mmol, 8.0 eq) and trimethylsulfoxonium iodide (1.5 g, 6.64 mmol, 8.0 eq) in 8.5 mL of dry DMSO. The aziridinol (0.25 g, 0.83 mmol, 1.0 eq) was added and the reaction was stirred at rt for 4 h and heated to 85 °C for 36 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the
product in 68% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2 (m, 7H), 4.6 (s, 1H), 4.15 (m, 1H), 3.65 (t of d, 1H, J = 8.5, 2.5 Hz), 3.4 (m, 1H), 2.4 (s, 3H), 2.0 (m, 1H), 1.6 (br s, 1H), 1.6 (br m, 1H); 13C NMR (75 MHz, CDCl$_3$) δ 143.5, 139.8, 134.4, 129.5, 128.5, 127.7, 127.4, 126.1, 78.7, 71.8, 46.7, 31.2, 21.5. IR 3505 (br, OH), 1335, 1159 (SO$_2$). HRMS calculated: 317.1086; observed: 317.1088.

Preparation of 16 (enantiomerically pure).

The requisite epoxy alcohol was prepared from geraniol according to the procedure of Sharpless et. al. in 97% yield and 96% ee.8 1H NMR (300 MHz, CDCl$_3$) δ 5.1 (t, 1H), 3.8 (m, 1H), 3.65 (m, 1H), 3.0 (m, 1H), 2.5 (br s, 1H), 2.05 (m, 2H), 1.65 (s, 3H), 1.6 (m, 3H), 1.45 (m, 1H), 1.3 (m, 4H); 13C NMR (75 MHz, CDCl$_3$) δ 132.1, 123.3, 63.0, 61.4, 61.2, 38.4, 25.6, 23.6, 17.6, 16.7. The remainder of the synthesis to 16 is adapted from the procedure of Coates, et al.16

The epoxy alcohol (9.0 g, 52.9 mmol, 1.0 eq) was placed in 200 mL of dry DMF and treated with TBSCl (8.4 g, 55.6 mmol, 1.05 eq) and imidazole (9.0 g, 132.3 mmol, 2.5 eq). The reaction was stirred at rt overnight and diluted with 500 mL of water. The aqueous layer was extracted 3x with portions of diethyl ether, the combined organics dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified by column chromatography (95:5 hexanes/ethyl acetate) to give the product in 89% yield.16

A suspension of NaN$_3$ (2.1 g, 32.4 mmol, 2.2 eq) in 24 mL of dry toluene was cooled to 0 °C. Diethylaluminum chloride (16.3 mL as a 1.8 M solution in toluene, 29.4 mmol, 2.0 eq) was added dropwise over 10 min. The reaction was stirred for 6 h and cooled to -78 °C. A solution of the epoxy alcohol (2.5 g, 14.7 mmol, 1.0 eq) dissolved in a small amount of toluene was added dropwise and the reaction stirred at -78 °C for 1 h, then at rt for 16 h. The solution was cooled to 0 °C and diluted with 80 mL of ethyl acetate. Sodium fluoride (32.4 g) was added, followed by 4.2 mL of water and the mixture was stirred for 4 h at rt. The slurry was filtered through a pad of Celite and the filter cake was washed well with portions of ethyl acetate. The filtrate was evaporated and the residue
was purified by column chromatography to give the azido diol in 54% yield as one major regioisomer. 1H NMR (300 MHz, CDCl$_3$) δ 5.1 (t, 1H, $J = 7.1$ Hz), 3.75 (dd, 1H, $J = 11.1, 3.2$ Hz), 3.68 (1H, dd, $J = 11.1, 7.7$ Hz), 3.55 (dd, 1H, $J = 7.7, 3.2$ Hz), 2.4-2.65 (br s, 2H, exch), 2.0-2.1 (m, 2H), 1.65 (ddd, 1H, $J = 14.1, 10.7, 4.7$ Hz), 1.69 (d, $J = 1.1$ Hz, 3H), 1.6 (s, 3H), 1.47 (ddd, 1H, $J = 14.0, 10.8, 5.9$ Hz), 1.38 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 132.4, 123.0, 75.9, 65.3, 62.3, 36.3, 25.4, 22.1, 19.1, 17.4.16

The azido diol (1.2 g, 5.6 mmol, 1.0 eq) was dissolved in 25 mL of dry DMF and treated with TBSCl (0.84 g, 5.6 mmol, 1.0 eq) and imidazole (0.96 g, 14.1 mmol, 2.5 eq). The reaction was stirred at rt overnight, diluted with 50 mL of water and extracted 3x with portions of diethyl ether. The combined organics were washed with brine, dried over sodium sulfate and the volatiles evaporated. The residue was purified by column chromatography (3:1 hexanes/ethyl acetate) to give the product in 62% yield in addition to some of the secondary-protected alcohol. 1H NMR (300 MHz, CDCl$_3$) δ 5.1 (t, 1H, $J = 7.1$ Hz), 3.7 (dd, 1H, $J = 9.4, 3.4$ Hz), 3.6 (dd, 1H, $J = 9.4, 8.2$ Hz), 3.55 (dd, 1H, $J = 8.2, 3.4$ Hz), 2.8 (br s, 1H), 2.0-2.1 (m, 2H), 1.69 (d, $J = 1.1$ Hz, 3H), 1.63 (s, 3H), 1.60 (m, 1H), 1.45 (m, 1H), 1.32 (s, 3H), 0.9 (s, 9H), 0.1 (s, 3H), 0.09 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 132.3, 123.5, 123.4, 75.7, 64.9, 62.8, 53.1, 36.6, 25.8, 25.7, 22.2, 19.2, -5.4.16

The alcohol (1.4 g, 4.4 mmol, 1.0 eq) was dissolved in 20 mL of dry dichloromethane and cooled to 0$^\circ$C. Methanesulfonyl chloride (1.0 mL, 13.3 mmol, 3.0 eq) was added dropwise, followed by triethylamine (1.9 mL, 13.6 mmol, 3.1 eq). The reaction was stirred until TLC indicated no starting material was present and then quenched with an equal volume of water. The phases were separated and the aqueous layer was extracted 2x with portions of dichloromethane. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified by column chromatography (3:1 hexanes/ethyl acetate) to give the mesylate in 66% yield. 1H NMR (300 MHz, CDCl$_3$) δ 5.1 (t, 1H, $J = 7.1$ Hz), 4.6 (dd, 1H, $J = 7.9, 2.6$ Hz), 3.94 (dd, 1H, $J = 11.8, 2.6$ Hz), 3.86 (dd, 1H, $J = 11.8, 7.9$ Hz), 3.15 (s, 3H), 2.0-2.2 (m, 2H), 1.69 (d, $J = 1.0$ Hz, 3H), 1.65 (m, 1H), 1.62 (s, 3H), 1.56 (m, 1H), 1.39 (s, 3H), 0.9 (s, 9H), 0.1 (s, 3H), 0.09 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 132.8, 122.7, 87.8, 64.3, 62.5, 39.1, 37.0, 25.9, 25.7, 22.2, 19.7, 19.6, 18.4, -5.5.16
A suspension of LAH (0.36 g, 8.6 mmol, 3.2 eq) was placed in 26 mL of dry diethyl ether and cooled to 0 °C. The mesylate (1.1 g, 2.7 mmol, 1.0 eq) dissolved in 12 mL of diethyl ether was added dropwise over 2 min and the reaction was stirred for 4 h. The gray suspension was quenched with water, followed by 0.15 M NaOH and stirred for 1 h. The white solid was filtered and washed well with portions of ethyl acetate. The organics were removed via rotary evaporation and the residue was purified by column chromatography (9:1 CH₂Cl₂/MeOH) to give the product in 45% yield as a white solid. The NMR data matched those reported in the literature.¹⁶

The aziridine (0.4 g, 1.4 mmol, 1.0 eq) was dissolved in 14 mL of dry dichloromethane, cooled to 0 °C and treated with toluenesulfonfyl chloride (0.3 g, 1.55 mmol, 1.1 eq) and triethylamine (0.24 mL, 1.69 mmol, 1.2 eq). The reaction was stirred overnight and quenched with saturated sodium bicarbonate. Typical extractive workup and purification by column chromatography gave the aziridinol in 84% yield. The TBS group fell off during the reaction or the subsequent workup. ¹H NMR (300 MHz, CDCl₃) δ 7.8 (d, 2H, J = 8.2 Hz), 7.2 (d, 2H, J = 8.0 Hz), 5.05 (br t, 1H), 3.6 (dd, 1H, J = 12.1, 5.2 Hz), 3.45 (dd, 1H, J = 11.8, 7.4 Hz), 3.05 (dd, 1H, J = 7.4, 5.2 Hz), 2.4 (s, 3H), 1.9-2.2 (m, 5H), 1.65 (s, 3H), 1.6 (s, 3H), 1.3 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.9, 138.0, 132.6, 129.5, 127.2, 122.8, 60.2, 55.3, 52.3, 34.6, 25.7, 25.4, 21.6, 18.3, 17.7. IR 3517 (br, OH), 1319, 1157 (SO₂). HRMS [M + H]+ calculated: 324.1633; observed: 324.1638.

Preparation of 16a.

Treatment of the aziridinol (0.1 g, 0.297 mmol, 1.0 eq) with 8.0 eq of trimethylsulfoxonium methylide as a 0.1 M solution in DMSO for 36 h at rt gave the aza-Payne rearranged material in 70% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.8 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.2 Hz), 4.95 (d of d, 1H, J = 5.8, 1.4 Hz), 4.8 (s, 1H), 2.9 (m, 1H), 2.7 (m, 1H), 2.6 (t of d, 1H, J = 4.4, 1.4 Hz), 2.4 (s, 3H), 2.0 (br m, 2H, J = 5.8 Hz), 1.65 (s, 3H), 1.5-1.7 (m, 2H), 1.55 (s, 3H), 1.05 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 140.2, 132.5, 129.5, 126.9, 123.3, 57.7, 57.2, 44.7, 38.4, 25.6, 22.0, 21.5, 20.9, 17.6. IR 3276 (NH), 1327, 1157 (SO₂). HRMS [M + H]+ calculated: 324.1633; observed: 324.1620. A yield of 19% of the cyclized product was also observed.

Preparation of 16b from the epoxy amine 16a.
A suspension of NaH (92.4 mg as a 60% dispersion in mineral oil (washed twice with dry pentane), 2.3 mmol, 10.0 eq) in DMSO (2.3 mL, 0.1 M in aziridinol) was treated with trimethylsulfoxonium iodide (0.51 g, 2.3 mmol, 10.0 eq) and the reaction stirred at rt for 30 min to give a milky-white solution. The epoxy amine 16a (0.075 g, 0.23 mmol, 1.0 eq) was added to the ylide, stirred at rt for 30 min and heated to 85 °C for 24 h. The cooled reaction was quenched with 10 mL of saturated ammonium chloride and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the desired pyrrolidine in 86% yield as a thick oil.

\[
\begin{align*}
\text{H} & \quad \text{NMR (300 MHz, CDCl}_3\text{)} \quad \delta \quad 7.7 \quad (d, 2H, J = 8.2 \text{ Hz}), \quad 7.2 \quad (d, 2H, J = 8.2 \text{ Hz}), \quad 5.05 \quad (\text{br m, 1H}), \quad 4.0 \quad (\text{dd, 1H, } J = 11.8, 5.5 \text{ Hz}), \quad 3.4 \quad (\text{m, 2H}), \quad 2.4 \quad (\text{s, 3H}), \\
& \quad 1.8-2.2 \quad (2 \text{ m, 3H}), \quad 1.4-1.8 \quad (\text{m, 4H}), \quad 1.6 \quad (\text{s, 3H}), \quad 1.5 \quad (\text{s, 3H}), \quad 1.3 \quad (\text{s, 3H}); \quad ^{13}\text{C} \text{ NMR (75 MHz, CDCl}_3\text{)} \quad \delta \quad 142.7, \quad 138.4, \quad 132.0, \quad 129.4, \quad 127.1, \quad 123.8, \quad 76.4, \quad 70.3, \quad 45.5, \quad 39.8, \quad 30.5, \quad 25.7, \quad 23.5, \quad 21.5, \quad 19.1, \quad 17.7.
\end{align*}
\]

Preparation of 16b from aziridinol 16 (one-pot reaction).

The aziridinol (0.1 g, 0.31 mmol, 1.0 eq) was treated with 8.0 eq of dimethylsulfoxonium methylide as a 0.1 M solution in DMSO. The reaction was stirred at rt for 4 h, then heated to 80 °C for 24 h. The reaction was diluted with 2x volume of water and was extracted several times with ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified via column chromatography using a hexane/ethyl acetate gradient (9:1 hexane/ethyl acetate to 1/1 hexane/ethyl acetate) to give the product in 70% yield.

\[
\begin{align*}
\text{H} & \quad \text{NMR (300 MHz, CDCl}_3\text{)} \quad \delta \quad 7.7 \quad (d, 2H, J = 8.2 \text{ Hz}), \quad 7.2 \quad (d, 2H, J = 8.2 \text{ Hz}), \quad 5.05 \quad (\text{br m, 1H}), \quad 4.0 \quad (\text{dd, 1H, } J = 11.8, 5.5 \text{ Hz}), \quad 3.4 \quad (\text{m, 2H}), \quad 2.4 \quad (\text{s, 3H}), \quad 1.8-2.2 \quad (2 \text{ m, 3H}), \quad 1.4-1.8 \quad (\text{m, 4H}), \quad 1.6 \quad (\text{s, 3H}), \quad 1.5 \quad (\text{s, 3H}), \quad 1.3 \quad (\text{s, 3H}); \quad ^{13}\text{C} \text{ NMR (75 MHz, CDCl}_3\text{)} \quad \delta \quad 142.7, \quad 138.4, \quad 132.0, \quad 129.4, \quad 127.1, \quad 123.8, \quad 76.4, \quad 70.3, \quad 45.5, \quad 39.8, \quad 30.5, \quad 25.7, \quad 23.5, \quad 21.5, \quad 19.1, \quad 17.7. \quad \text{IR} \quad 3503 \quad (\text{br, OH}), \quad 1325, \quad 1155 \quad (\text{SO}_2). \quad \text{HRMS calculated: 337.1712; observed: 337.1709.}
\end{align*}
\]

Preparation of 17.
The alkene (1.0 g, 6.6 mmol, 1.0 eq) was dissolved in 15 mL of methanol and treated with catalytic PtO₂ (3.0 mg, 0.013 mmol, 0.002 eq) and a balloon of hydrogen. The reaction was stirred vigorously for 1 h and then filtered through a pad of silica gel. The filtrate was evaporated to give the desired allylic alcohol in essentially quantitative yield. The NMR spectra matched those reported in the literature for the desired product.

The alkene (1.0 g, 6.5 mmol, 1.0 eq) was placed in 30 mL of dry acetonitrile and treated with anhydrous Chloramine T (1.5 g, 6.8 mmol, 1.05 eq) and a catalytic amount of NBS (0.23 g, 1.3 mmol, 0.2 eq) at rt. The reaction rapidly turned to a bright yellow slurry. The reaction was stirred at rt overnight, then diluted with an equal amount of water. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 53% yield as a mixture of diastereomers.

\[\text{Preparation of 17a.} \]
A suspension of NaH (135.0 mg, 3.36 mmol, 4.0 eq) in 10 mL of THF was treated with the aziridinol (270.0 mg, 0.84 mmol, 1.0 eq) and was stirred at rt for 4 h, cooled to 0 °C and carefully diluted with an equal amount of saturated ammonium chloride. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 78% yield as two separate diastereomers in a 1:1 ratio. \(^1\)H NMR of less polar diastereomer (300 MHz, CDCl\(_3\)) \(\delta\) 7.8 (d, 2H, \(J = 8.2\) Hz), 7.2 (d, 2H, \(J = 8.2\) Hz), 5.5 (d, 1H, \(J = 6.6\) Hz), 2.8 (m, 1H), 2.6 (d, 1H, \(J = 4.6\) Hz), 2.45 (d, 1H, \(J = 4.6\) Hz), 2.4 (s, 3H), 2.0 (m, 1H), 1.0-1.6 (several m, 7H), 0.75 (2 d, 6H, \(J = 6.8\) Hz); \(^13\)C NMR of less polar diastereomer (75 MHz, CDCl\(_3\)) \(\delta\) 143.6, 137.4, 129.7, 127.1, 58.5, 55.6, 53.9, 36.5, 32.6, 31.9, 28.1, 26.0, 21.5, 19.5, 19.4. IR 3279 (NH), 1327, 1159 (SO\(_2\)). HRMS calculated: 323.1555; observed: 323.1552. \(^1\)H NMR of more polar diastereomer (300 MHz, CDCl\(_3\)) \(\delta\) 7.8 (d, 2H, \(J = 8.2\) Hz), 7.2 (d, 2H, \(J = 8.2\) Hz), 4.9 (d, 1H, \(J = 5.8\) Hz), 3.4 (m, 1H), 2.75 (m, 1H), 2.4 (s and m, 3H and 1H), 2.0 (m, 1H), 1.0-1.8 (several m, 7H), 0.8 (2 d, 6H, \(J = 6.8\) Hz); \(^13\)C NMR of more polar diastereomer (75 MHz, CDCl\(_3\)) \(\delta\) 143.2, 129.6, 129.4, 127.1, 60.3, 53.5, 48.8, 42.6, 36.3, 32.9, 31.9, 27.9, 21.5, 19.7, 19.6. IR 3235 (NH), 1319, 1167 (SO\(_2\)). HRMS calculated: 323.1555; observed: 323.1550.

Preparation of 17b from epoxy amine 17a (enantiomerically pure).

The reaction was performed initially on a mixture of diastereomeric epoxy amines, using dimethylsulfoxonium methylide prepared as a 0.8 M stock solution in DMSO. The epoxy amine 17a as a mixture of diastereomers (50.0 mg, 0.15 mmol, 1.0 eq) was treated with 6 mL of the 0.8 M solution of ylide in DMSO. The reaction was heated immediately to 85 °C in a sealed tube for 24 h, cooled and diluted with 15 mL of water. The aqueous was extracted 4x with portions of ethyl acetate, the combined organics washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product as a mixture of diastereomers in 76% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (2 d, total 2H, \(J = 8.2\) Hz), 7.2 (d, 2H, \(J = 8.0\) Hz), 3.1-3.6 (m, total 3H), 2.4 (2 s, total 3H), 2.15 (m, 1H), 1.95 (m, 1H), 1.4-1.7 (m, 5H), 0.8-1.0 (m,
4H), 0.9 (d, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 143.2, 135.1, 129.5, 127.5, 78.5, 67.7, 45.3, 41.7, 37.2, 35.0, 33.8, 32.0, 26.1, 21.5, 19.7, 19.6.

The reaction was repeated on the less polar diastereomer to ensure its reproducibility. The product was obtained in 76% yield as one diastereomer, although the identity of the diastereomer could not be ascertained by nOe experiments. 1H NMR (300 MHz, CDCl$_3$) δ 7.8 (d, 2H, J = 8.2 Hz), 7.2 (d, 2H, J = 8.2 Hz), 3.55 (t, 1H, J = 9.0 Hz), 3.4 (m, 1H), 3.3 (m, 1H), 2.4 (s, 3H), 2.2 (m, 1H), 1.95 (m, 1H), 1.4-1.7 (m, 5H), 0.8-1.0 (m, 4H), 0.9 (d, 6H, J = 6.8 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 143.2, 135.1, 129.5, 127.5, 78.5, 67.7, 45.3, 41.7, 37.2, 35.0, 33.8, 32.0, 26.1, 21.5, 19.7, 19.6. IR 3495 (br, OH), 1333, 1161 (SO$_2$). HRMS calculated: 337.1712; observed: 337.1711.

Preparation of 17b from aziridinol 17 (one-pot reaction).

![Chemical structure](image)

The reaction was performed as previously described to give the product as a mixture of diastereomers in 76% yield.

Preparation of 18.

![Chemical structure](image)

This substrate was prepared by benzylation of 3-methyl-2-butenol according to standard procedure to give the desired product in 94% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.4 (m, 5H), 5.5 (m, 1H), 4.6 (s, 2H), 4.1 (d, 2H), 1.8 (s, 3H), 1.7 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 138.5, 137.0, 128.2, 127.6, 127.4, 121.0, 72.0, 66.5, 25.7, 18.0.

Selenium dioxide (3.2 g, 28.4 mmol, 0.5 eq) and 1BuOOH (29.6 mL of a 3.84 M solution in toluene, 113.6 mmol, 2.0 eq) were combined in 45 mL of dichloromethane, cooled to -15 °C and stirred for 30 min. The alkene (10.0 g, 56.8 mmol, 1.0 eq) was dissolved in dichloromethane and was added dropwise to the solution over 10 min. The reaction was stirred for 36 h, worked up and purified by column chromatography (9:1 hexanes/ethyl acetate) to give 76% yield of the desired allylic aldehyde. 1H NMR (300 MHz, CDCl$_3$) δ 9.4 (s, 1H), 7.2-7.3 (m, 5H), 6.5 (br dd, 1H), 4.5 (s, 2H), 4.3 (m, 2H), 1.6 (s, 3H). 13C
The allylic aldehyde (2.0 g, 10.5 mmol) was dissolved in 5 mL methanol. The reaction mixture was cooled to 0 °C and portions of sodium borohydride (1.6 g, 42.2 mmol) added over 15 min. The reaction was allowed to stir for an additional 30 min at 0 °C and then at rt overnight. An equal amount of water was added and the mixture was extracted 3x with ethyl acetate. The combined organics were washed with brine, dried over magnesium sulfate, and the solvent was removed under reduced pressure to afford the product in 59% yield after column chromatography (3:1 hexane/ethyl acetate). A much better yield was obtained by removing the methanol under reduced pressure and then proceeding with the extractive workup as described above. The desired product was obtained in 98% yield without column chromatography. 1H NMR (300 MHz, CDCl₃) δ 7.4 (m, 5H), 5.6 (t, 1H), 4.5 (s, 2H), 4.05 (d, 2H), 3.95 (d, 2H), 3.05 (t, 1H), 1.6 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 139.3, 138.0, 128.1, 127.6, 127.4, 120.6, 72.0, 67.3, 66.0, 13.6.

The allylic alcohol (1.184 g, 6.2 mmol, 1 eq) was placed in 30 mL of acetonitrile. Anhydrous Chloramine-T (1.4 g, 6.2 mmol) and N-bromosuccinimide (0.22 g, 0.2 eq) were added successively and the light yellow slurry allowed to stir overnight. The reaction mixture was quenched with water and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine and dried over sodium sulfate. The crude product was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the aziridinol in 80% yield. 1H NMR (300 MHz, CDCl₃) δ 7.8 (d, 2H, J = 8.2 Hz), 7.1-7.4 (m, 7H), 4.4 (s, 2H), 4.0 (d, 2H, J = 6.7 Hz), 3.6 (dd, 1H, J = 10.4, 4.9 Hz), 3.45 (t, 1H, J = 7.0 Hz), 3.35 (t, 1H, J = 4.9 Hz), 3.2 (t, 1H, J = 7.0 Hz), 2.4 (s, 3H), 1.4 (s, 3H); 13C NMR (75 MHz, CDCl₃) δ 143.9, 137.5, 137.1, 129.4, 129.3, 128.2, 127.6, 127.4, 72.9, 67.0, 65.2, 56.2, 48.4, 21.4, 16.1. HRMS [M + H]⁺ calculated: 362.1426; observed: 362.1426.

Preparation of 18a.
A suspension of NaH (0.11 g, 2.76 mmol, 4.0 eq) in 7 mL of THF was treated with the aziridinol (0.25 g, 0.69 mmol, 1.0 eq) and stirred at rt for 4 h, cooled to 0 °C and carefully diluted with an equal amount of saturated ammonium chloride. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 94% yield.

1H NMR (300 MHz, CDCl3) δ 7.7 (d, 2H, J = 8.2 Hz), 7.1-7.3 (m, 7H), 5.4 (d, 1H, J = 6.9 Hz), 4.3 (d, 2H, J = 16.4 Hz), 3.5 (dd, 1H, J = 9.9, 5.2, 0.8), 3.3 (ddd, 1H, J = 9.9, 4.9, 0.8 Hz), 3.0 (m, 1H), 2.7 (d, 1H, J = 4.7 Hz), 2.5 (d, 1H, J = 4.7 Hz), 2.4 (s, 3H), 1.2 (s, 3H);

13C NMR (75 MHz, CDCl3) δ 143.4, 137.2, 137.1, 129.5, 128.4, 127.8, 127.6, 127.1, 73.1, 68.6, 57.3, 56.8, 54.8, 21.5, 17.5. IR 3278 (NH), 1331, 1163 (SO2). HRMS [M + H]+ calculated: 362.1426; observed: 362.1429.

Preparation of 18b from epoxy amine 18a.

The dimethylsulfoxonium methyldide was formed as previously described from NaH (0.09 g as a 60% dispersion in mineral oil, 2.24 mmol, 8.0 eq) and trimethylsulfoxonium iodide (0.5 g, 2.24 mmol, 8.0 eq) in 3 mL of dry DMSO. The amino epoxide (0.1 g, 0.28 mmol, 1.0 eq) was added and the reaction was heated to 80 °C for 24 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 88% yield.

1H NMR (300 MHz, CDCl3) δ 7.8 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 4.6 (s, 2H), 3.7 (dd, 1H, J = 10.4, 1.9 Hz), 3.6 (dd, 1H, J = 10.4, 5.8 Hz), 3.4 (overlapping dd, 2H), 3.2 (m, 1H), 2.4 (s, 3H), 1.95 (br m, 1H), 1.6 (br m, 2H), 1.4 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 143.3, 137.9, 133.9, 129.4, 128.2, 127.6, 127.5, 127.49, 79.2, 73.5, 71.3, 69.1, 46.3, 37.9, 22.5, 21.4.

Preparation of 18b from aziridinol 18 (one-pot procedure).
The dimethylsulfoxonium methylide was formed as previously described from NaH (0.22 g as a 60% dispersion in mineral oil, 5.54 mmol, 8.0 eq) and trimethylsulfoxonium iodide (1.22 g, 5.54 mmol, 8.0 eq) in 7 mL of dry DMSO. The aziridinol (0.25 g, 0.69 mmol, 1.0 eq) was added and the reaction stirred at rt for 4 h and heated to 80 °C for 24 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 79% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.8 (d, 2H, J = 8.2 Hz), 7.2-7.4 (m, 7H), 4.6 (s, 2H), 3.7 (dd, 1H, J = 10.4, 1.9 Hz), 3.6 (dd, 1H, J = 10.4, 5.8 Hz), 3.4 (overlapping dd, 2H), 3.2 (m, 1H), 2.4 (s, 3H), 1.95 (br m, 1H), 1.6 (br m, 2H), 1.4 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 137.9, 133.9, 129.4, 128.2, 127.6, 127.5, 127.49, 79.2, 73.5, 71.3, 69.1, 46.3, 37.9, 22.5, 21.4. IR 3509 (br, OH), 1333, 1159 (SO₂). HRMS calculated: 375.1504; observed: 375.1501.

Preparation of 19.

\[
\begin{align*}
\text{CO}_2\text{Et} \\
\text{OH}
\end{align*}
\]

The desired ester was prepared according to the method of Rathke and coworkers.²⁰ ¹H NMR (300 MHz, CDCl₃) δ 5.6 (s, 1H), 4.1 (q, 2H), 2.8 (m, 2H), 2.2 (m, 2H), 1.6 (m, 6H), 1.2 (t, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.8, 163.4, 112.9, 59.4, 37.9, 29.7, 28.6, 27.7, 26.2, 14.3.

\[
\begin{align*}
\text{OH}
\end{align*}
\]

The ester (2.0 g, 11.8 mmol, 1.0 eq) was reduced using DIBAL according to standard procedure to give the desired product in 89% yield. ¹H NMR (300 MHz, CDCl₃) δ 5.4 (t, 1H), 4.1 (d, 2H), 2.0-2.2 (m, 4H), 1.4-1.8 (m, 7H).²¹

\[
\begin{align*}
\text{TsN} \quad \text{OH}
\end{align*}
\]
The alkene (0.5 g, 3.97 mmol, 1.0 eq) was placed in 20 mL of dry acetonitrile and treated with anhydrous Chloramine T (0.90 g, 3.97 mmol, 1.0 eq) and a catalytic amount of NBS (0.14 g, 0.79 mmol, 0.2 eq) at rt. The reaction rapidly turned to a bright yellow slurry. The reaction was stirred at rt overnight, then diluted with an equal amount of water. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 51% yield. \[^1\text{H} NMR \ (300 \text{ MHz, CDCl}_3) \delta 7.8 \ (d, 2H, J = 8.2 \text{ Hz}), 7.2 \ (d, 2H, J = 8.2 \text{ Hz}), 3.6 \ (dd, 1H, J = 12.1, 5.5 \text{ Hz}), 3.4 \ (dd, 1H, J = 11.8, 6.9 \text{ Hz}), 3.0 \ (dd, 1H, J = 6.8, 5.5 \text{ Hz}), 2.4 \ (s, 3H), 2.2 \ (br s, 1H), 2.0 \ (m, 1H), 1.8 \ (m, 1H), 1.3-1.6 \ (2 \text{ m, 8H}); ^{13}\text{C} \ NMR \ (75 \text{ MHz, CDCl}_3) \delta 143.7, 137.6, 129.4, 127.1, 59.5, 57.9, 52.1, 31.4, 25.6, 25.2, 25.1, 21.4. \ IR \ 3515 \ (br, OH), 1320, 1157 \ (\text{SO}_2). \ HRMS \ calculated: \ 295.1242; \ observed: \ 295.1238.

Preparation of 19a.

\[
\begin{align*}
\text{TsH} & \ \\
\text{N} & \ \\
\text{O} & \ \\
\end{align*}
\]

Sodium hydride (0.14 g, 3.4 mmol, 4.0 eq) was suspended in 9 mL of dry THF and the aziridinol (0.25 mg, 0.85 mmol, 1.0 eq) added. The suspension was stirred at rt for 4 h and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 93% yield. \[^1\text{H} NMR \ (300 \text{ MHz, CDCl}_3) \delta 7.8 \ (d, 2H, J = 8.2 \text{ Hz}), 7.2 \ (d, 2H, J = 8.2 \text{ Hz}), 5.1 \ (s, 1H), 2.9 \ (dd, 1H, J = 3.9, 2.7 \text{ Hz}), 2.7 \ (dd, 1H, J = 4.4, 2.7 \text{ Hz}), 2.5 \ (dd, 1H, J = 4.4 \text{ Hz}), 2.4 \ (s, 3H), 1.0-1.8 \ (br \text{ m, 10H}); ^{13}\text{C} \ NMR \ (75 \text{ MHz, CDCl}_3) \delta 143.0, 140.3, 129.5, 126.8, 57.7, 57.3, 44.9, 33.7, 28.8, 24.9, 21.5, 20.9, 20.6. \ IR \ 3223 \ (NH), 1319, 1157 \ (\text{SO}_2). \ HRMS \ calculated: \ 295.1242; \ observed: \ 295.1240.

Preparation of 19b from epoxy amine 19a.

\[
\begin{align*}
\text{TsN} & \ \\
\text{O} & \ \\
\end{align*}
\]

The dimethylsulfoxonium methylide was formed as previously described from NaH (0.11 g as a 60% dispersion in mineral oil, 2.71 mmol, 8.0 eq) and trimethylsulfoxonium iodide (0.60 g, 2.71 mmol, 8.0 eq) in 3.5 mL of dry DMSO. The amino epoxide (0.1 g, 0.34 mmol, 1.0 eq) was added and the reaction was heated to 80 °C for 24 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the
volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 52% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.2\) Hz), 7.2 (d, 2H, \(J = 8.2\) Hz), 4.3 (br m, 1H), 3.65 (m, 1H), 3.4 (m, 1H), 2.4 (s, 3H), 2.0-2.3 (m, 2H), 1.0-1.8 (m, 10H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 142.5, 139.4, 129.3, 126.8, 73.8, 72.8, 46.7, 36.1, 30.8, 29.6, 24.9, 24.8, 24.6, 21.4.

Preparation of 19b from aziridinol 19 (one-pot procedure).

![Structure](image)

The dimethylsulfoxonium methylide was formed as previously described from NaH (0.11 g as a 60% dispersion in mineral oil, 2.71 mmol, 8.0 eq) and trimethylsulfoxonium iodide (0.60 g, 2.71 mmol, 8.0 eq) in 3.5 mL of dry DMSO. The aziridinol (0.1 g, 0.33 mmol, 1.0 eq) was added and the reaction stirred at rt for 4 h and heated to 80 °C for 36 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (3:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 69% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.2\) Hz), 7.2 (d, 2H, \(J = 8.2\) Hz), 4.3 (br m, 1H), 3.65 (m, 1H), 3.4 (m, 1H), 2.4 (s, 3H), 2.0-2.3 (m, 2H), 1.0-1.8 (m, 10H); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 142.5, 139.4, 129.3, 126.8, 73.8, 72.8, 46.7, 36.1, 30.8, 29.6, 24.9, 24.8, 24.6, 21.4. HRMS calculated: 309.1399; observed: 309.1396.

Preparation of Tetrasubstituted Pyrrolidine 24b.

The aziridinol 24 (30.0 mg, 0.0964 mmol, 1.0 eq) was added to a solution of the ylide (8.0 eq) in 2 mL of freshly distilled DMSO. The reaction was stirred at rt for 6 h and heated to 80 °C for 36 h. The light orange solution was quenched with 5 mL of water and the aqueous mixture extracted 4 times with ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles removed under reduced pressure. The residue was purified by column chromatography (9:1 to 3:1 hexanes/ethyl acetate) to give the desired product in 67% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.7 (d, 2H, \(J = 8.4\) Hz), 7.2 (d, 2H, \(J = 8.4\) Hz), 3.4 (m, 2H), 2.4 (s, 3H), 1.3 (s, 3H), 1.15 (s, 3H), 1.1-2.0 (overlapping signals, 8H), 0.86 (t, 3H, \(J = 7.5\) Hz); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 142.6, 139.0, 129.4, 127.0, 81.6, 72.4, 45.3, 37.1, 36.3, 27.6, 24.2, 23.7, 22.3, 21.4, 14.0; HRMS (ES) calcd for C\(_{16}\)H\(_{23}\)NO\(_3\)S, 311.1555 \(m/z\) (M+H); observed, 311.1564 \(m/z\).

Preparation of 20.
The corresponding alkene (55 mg, 0.37 mmol) was placed in 6 mL of dry acetonitrile and treated with anhydrous Chloramine-T (85 mg, 0.37 mmol) and a catalytic amount of NBS (13 mg, 0.074 mmol) at rt. The reaction rapidly turned to bright yellow slurry. The reaction was stirred at rt overnight, the diluted with an equal amount of water. The reaction was extracted with portions of ethyl acetate (3x), the combined organic layer was washed with brine, dried over anhydrous sodium sulfate and the solvents were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the product in 85% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.84 (2H, d, J = 8.2 Hz), 7.30 (2H, d, J = 8.0 Hz), 7.24-7.21 (3H, m), 7.18-6.98 (2H, m), 4.21 (1H, s), 4.21-4.16 (2H, m), 3.21-3.17 (1H, br), 2.42 (3H, s), 1.15 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 144.2, 137.4, 133.0, 129.6, 128.3, 127.8, 127.1, 127.0, 65.5, 60.3, 59.2, 51.3, 21.6, 16.0, 14.1; IR (thin film) 3526 (br), 2934, 1599, 1497, 1453, 1404, 1321, 1290, 1156, 1092, 1042, 932, 874 cm$^{-1}$; HRMS (ES) calcd for C$_{17}$H$_{20}$NO$_3$S, 318.1164 m/z (M+H)$^+$; observed, 318.1171 m/z.

Preparation of 20a.

Sodium hydride (25 mg, 1.06 mmol, 4.0 eq) was suspended in 3 mL of dry THF and the latter aziridinol (84 mg, 0.26 mmol, 1.0 eq) was added. The suspension was stirred at rt for 4 h and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the desired product in 81% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.46 (2H, d, J = 8.2 Hz), 7.20-7.03 (7H, m), 5.26 (1H, d, J = 5.5 Hz), 4.33 (1H, m), 2.60 (1H, d, J = 4.3 Hz), 2.50 (1H, d, J = 4.4 Hz), 2.32 (3H, s), 1.25 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 143.1, 137.0, 136.5, 129.2, 128.3, 127.9, 127.6, 127.1, 60.8, 58.7, 51.7, 21.4, 18.9; IR (thin film) 3277 (br), 2926, 1653, 1599, 1495 1456, 1329, 1101, 1090, 1063, 814 cm$^{-1}$; HRMS (ES) calcd for C$_{17}$H$_{20}$NO$_3$S, 318.1164 m/z (M+H)$^+$; observed, 318.1161 m/z.

Preparation of 21.
The corresponding alkene (135 mg, 0.76 mmol) was placed in 10 mL of dry acetonitrile and treated with anhydrous Chloramine-T (173 mg, 0.76 mmol) and a catalytic amount of NBS (27 mg, 0.15 mmol) at rt. The reaction rapidly turned to bright yellow slurry. The reaction was stirred at rt overnight, the diluted with an equal amount of water. The reaction was extracted with portions of ethyl acetate (3x), the combined organic layer was washed with brine, dried over anhydrous sodium sulfate and the solvents were removed via rotary evaporation. The residue was purified using column chromatography (7:3 hexanes/ethyl acetate) to give the product in 71% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.82 (2H, d, J = 8.2 Hz), 7.28 (2H, d, J = 8.0 Hz), 6.92 (2H, d, J = 8.8 Hz), 6.75 (2H, d, J = 8.5 Hz), 4.15-4.12 (2H, m), 3.71 (3H, s), 2.40 (3H, s), 1.15 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 159.2, 144.1, 137.4, 129.6, 128.1, 127.0, 124.8, 113.7, 65.4, 59.1, 55.1, 51.0, 21.5, 15.9; IR (thin film) 3522 (br), 2957, 2934, 2838, 1736, 1613, 1516, 1458, 1400, 1349, 1250, 1157, 1092, 1036, 880, 816 cm$^{-1}$; HRMS (ES) calcd for C$_{18}$H$_{22}$NO$_4$S, 348.1270 m/z (M+H)$^+$; observed, 348.1274 m/z.

Preparation of 21a.

Sodium hydride (36 mg, 1.50 mmol, 4.0 eq) was suspended in 10 mL of dry THF and the aziridinol (130 mg, 0.37 mmol, 1.0 eq) was added. The suspension was stirred at rt for 4 hr and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 93% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.47 (2H, d, J = 8.0 Hz), 7.06 (2H, d, J = 8.0 Hz), 6.96 (2H, d, J = 8.5 Hz), 6.63 (2H, d, J = 8.8 Hz), 5.57 (1H, d, J = 6.1 Hz), 4.27(1H, d, J = 6.1 Hz), 3.70 (3H, s), 2.57 (1H, d, J = 4.4 Hz), 2.47 (1H, d, J =4.4 Hz), 2.31 (3H, s), 1.22 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 159.1, 142.9, 137.1, 129.1, 128.6, 128.5, 127.0, 113.5, 60.4, 58.7, 55.1, 51.7, 21.3, 18.6; IR (thin film) 3279 (br), 2934, 1613, 1514, 1443, 1327, 1250, 1101, 1094, 1067, 1034, 814 cm$^{-1}$.

Preparation of 22.
(Carbethoxyethylidene)triphenylphosphorane (0.87 g, 2.4 mmol) was suspended in 10 mL THF. α,α,α-trifluoro-p-tolualdehyde (0.27 ml, 2.0 mmol) was added dropwise to the yellow slurry. The reaction was allowed to stir overnight. Some silica gel was added to the reaction mixture. The solvent was removed under reduced pressure and the yellow solid was purified via column chromatography (97:3 hexanes/ethyl acetate) to give the alkene in 92% yield. 1H NMR (300 MHz, CDCl3) δ 7.66-7.58 (3H, m), 7.47-7.40 (2H, m), 4.26 (2H, q, J = 7.1 Hz), 2.07 (3H, s), 1.34 (3H, t, J = 7.1 Hz); 13C NMR (125 MHz, CDCl3) δ 168.2, 139.5, 136.9, 130.8, 129.7, 128.1, 125.3, 125.2, 61.1, 14.3, 14.0; IR (thin film) 2917, 2849, 1738, 1462, 1325, 1252, 1127 cm⁻¹; LRMS (70 ev, EI) m/z 258 [M]⁺, 213 [M-CH3CH2O]⁺; HRMS (ES) calcd for C13H13F3O2, 258.0868 m/z (M+H)⁺; observed, 258.0869 m/z.

Lithium aluminum hydride (0.14 g, 3.68 mmol) was suspended in 10 mL THF. The mixture was cooled to 0°C. A solution of the ester (0.475 g, 1.84 mmol) in 2 mL THF was added dropwise over 10 min. The mixture was warmed to room temperature for 1 hr. 10% HCl solution was added very slowly and the mixture was then stirred until the gray color of unquenched LiAlH₄ has completely disappeared. The mixture was filtered and the inorganic layer was washed with diethyl ether (5x). The combined organic layer was dried over anhydrous magnesium sulfate and filtered. The solvent was removed under reduced pressure and the residue was purified using column chromatography (85:15 hexanes/ethyl acetate) to give the desired primary alcohol in 76% yield. 1H NMR (300 MHz, CDCl3) δ 7.54 (2H, d, J = 7.9 Hz), 7.32 (2H, d, J = 8.2 Hz), 6.53 (1H, s), 4.17 (2H, s), 2.42 (1H, br), 1.85 (3H, s); 13C NMR (75 MHz, CDCl3) δ 141.2, 139.9, 128.9, 129.4, 126.7, 125.0, 123.2, 68.2, 15.1; IR (thin film) 3387 (br), 2926, 1653, 1616, 1456, 1325, 1420, 1327, 1165, 1124, 1069, 1017 cm⁻¹; LRMS (70 ev, EI) m/z 216 [M]⁺, 201 [M-CH3]⁺; HRMS (ES) calcd for C11H11F3O, 216.0762 m/z (M+H)⁺; observed, 216.0762 m/z.
The corresponding alkene (300 mg, 1.39 mmol) was placed in 15 mL of dry acetonitrile and treated with anhydrous Chloramine-T (316 mg, 1.39 mmol) and a catalytic amount of NBS (49 mg, 0.28 mmol) at rt. The reaction rapidly turned to bright yellow slurry. The reaction was stirred at rt overnight, the diluted with an equal amount of water. The reaction was extracted with portions of ethyl acetate (3x), the combined organic layer was washed with brine, dried over anhydrous sodium sulfate and the solvents were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the product in 56% yield. \(\text{1H NMR (300 MHz, CDCl}_3 \) \(\delta \) 7.82 (2H, d, \(J = 8.2 \) Hz), 7.52-7.42 (3H, m), 7.30 (2H, d, \(J = 6.9 \) Hz), 7.11 (2H, d, \(J = 7.8 \) Hz), 4.23-4.18 (2H, m), 2.41 (3H, s), 1.12 (3H, s); \(\text{13C NMR (75 MHz, CDCl}_3 \) \(\delta \) 144.5, 137.1, 129.7, 129.4, 129.0, 127.4, 127.0, 126.8, 126.7, 125.3, 125.2, 65.1, 60.4, 59.1, 50.5, 21.5, 20.9, 16.0, 14.0; IR (thin film) 3447 (br), 2919, 2849, 1653, 1618, 1456, 1325, 1159, 1127, 1068 cm\(^{-1}\); HRMS (ES) calcd for C\(_{18}\)H\(_{19}\)F\(_3\)NO\(_3\)S, 386.1038 m/z (M+H)+; observed, 386.1054 m/z.

Preparation of 22a.

Sodium hydride (45 mg, 1.87 mmol, 4.0 eq) was suspended in 10 mL of dry THF and the aziridinol (84 mg, 0.26 mmol, 1.0 eq) was added. The suspension was stirred at rt for 4 h and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 66% yield. \(\text{1H NMR (300 MHz, CDCl}_3 \) \(\delta \) 7.43 (2H, d, \(J = 8.0 \) Hz), 7.33 (2H, d, \(J = 8.2 \) Hz), 7.16 (2H, d, \(J = 7.9 \) Hz), 7.03 (2H, d, \(J = 8.2 \) Hz), 5.70 (1H, d, \(J = 6.3 \) Hz), 4.44 (1H, d, \(J = 6.3 \) Hz), 2.56-2.49 (2H, m), 2.29 (3H, s), 1.29 (3H, s); \(\text{13C NMR (75 MHz, CDCl}_3 \) \(\delta \) 143.5, 140.4, 136.7, 129.4, 129.3, 128.1, 127.0, 125.1, 125.0, 60.6, 58.4, 51.7, 21.2, 18.8; IR (thin film) 3276 (br), 2932, 2874, 1620, 1599, 1437, 1327, 1183, 1125, 1069, 858, 814 cm\(^{-1}\).

Preparation of 23.
The corresponding alkene (84 mg, 0.59 mmol) was placed in 10 mL of dry acetonitrile and treated with anhydrous Chloramine-T (135 mg, 0.59 mmol) and a catalytic amount of NBS (21 mg, 0.12 mmol) at rt. The reaction rapidly turned to bright yellow slurry. The reaction was stirred at rt overnight, the diluted with an equal amount of water. The reaction was extracted with portions of ethyl acetate (3x), the combined organic layer was washed with brine, dried over anhydrous sodium sulfate and the solvents were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the product in 60% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.78 (2H, d, J = 8.2 Hz), 7.27 (2H, d, J = 7.9 Hz), 4.01-3.92 (2H, m), 3.18-3.08 (1H, m), 3.01-2.96 (1H, m), 2.40 (3H, s), 1.47-1.25 (1H, m), 1.38 (3H, s), 1.21-1.07 (6H, m), 1.16 (3H, t, J = 3.3 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 143.9, 137.5, 129.4, 127.1, 65.6, 57.6, 50.5, 31.1, 27.0, 26.9, 22.3, 21.5, 16.1, 13.7; IR (thin film) 3522 (br), 2957, 2930, 2861, 1462, 1317, 1156, 1092, 1038, 922, 816 cm$^{-1}$; HRMS (ES) calcd for C$_{16}$H$_{26}$NO$_3$S, 312.1633 m/z (M+H)$^+$; observed, 312.1649 m/z.

Preparation of 23a.

\[\text{TsHN} \]
\[\text{C}_5\text{H}_11 \quad \text{Me} \]

Sodium hydride (33 mg, 1.36 mmol, 4.0 eq) was suspended in 10 mL of dry THF and the aziridinol (106 mg, 0.34 mmol, 1.0 eq) added. The suspension was stirred at rt for 4 hr and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 70% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.71 (2H, d, J = 8.2 Hz), 7.26 (2H, d, J = 7.9 Hz), 4.94 (1H, d, J = 7.1 Hz), 2.80-2.68 (1H, m), 2.63 (1H, d, J = 4.4 Hz), 2.44 (1H, d, J = 4.4 Hz), 2.39 (3H, s), 1.62-1.50 (1H, m), 1.41-1.22 (1H, m), 1.18 (3H, s), 1.18-0.92 (9H, m), 0.75 (3H, t, J = 6.6 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 143.5, 137.6, 129.6, 127.1, 58.7, 57.7, 54.8, 31.3, 31.2, 25.1, 22.3, 21.4, 15.9, 13.8; IR (thin film) 3279 (br), 2955, 2932, 2861, 1456, 1429, 1329, 1101, 1094, 1065, 895, 816 cm$^{-1}$.

Preparation of 24.

\[\text{C}_4\text{H}_9\text{OH} \]
\[\text{Me} \quad \text{Me} \]

S47
The corresponding ethyl ester (0.60 g, 3.27 mmol) was reduced using LiAlH₄ (0.25 g, 6.53 mmol) according to the previous procedure to give the desired product in 82% yield. ¹H NMR (300 MHz, CDCl₃) δ 4.09 (2H, s), 2.07 (2H, t, J = 7.4 Hz), 1.72 (3H, s), 1.65 (3H, s), 1.38-1.17 (6H, m), 1.09 (1H, br), 0.88 (3H, t, J = 6.9 Hz); ¹³C NMR (75 MHz, CDCl₃) 133.8, 127.6, 63.6, 33.8, 31.3, 22.7, 18.8, 16.6, 14.0; IR (thin film) 3316 (br), 2968, 2926, 2848, 1437, 1223, 1008 cm⁻¹; LRMS (70 ev, EI) m/z 142 [M]+, 124 [M-H₂O]+; HRMS (ES) calcd for C₉H₁₈O, 142.1358 m/z; observed, 142.1365 m/z.

Preparation of 24a.

The latter alkene (110 mg, 0.77 mmol) was placed in 10 mL of dry acetonitrile and treated with anhydrous Chloramine-T (176 mg, 0.77 mmol) and a catalytic amount of NBS (28 mg, 0.15 mmol) at rt. The reaction rapidly turned to bright yellow slurry. The reaction was stirred at rt overnight, the diluted with an equal amount of water. The reaction was extracted with portions of ethyl acetate (3x), the combined organic layer was washed with brine, dried over anhydrous sodium sulfate and the solvents were removed via rotary evaporation. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate to 8:2 hexanes/ethyl acetate) to give the product in 20% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.2 Hz), 7.27 (2H, d, J = 7.9 Hz), 3.82-3.78 (1H, m), 3.64-3.58 (1H, m), 2.40 (3H, s), 1.76-1.62 (2H, m), 1.62 (3H, s), 1.53 (3H, s), 1.29-1.08 (6H, m), 0.82 (3H, t, J = 4.4 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 143.6, 139.0, 129.4, 126.9, 100.5, 64.9, 57.1, 34.1, 28.3, 22.7, 21.5, 16.7, 14.6, 13.9; IR (thin film) 3513 (br), 2959, 2932, 2872, 1458, 1381, 1316, 1289, 1156, 1092, 1046, 918, 814 cm⁻¹; HRMS (ES) calcd for C₁₆H₂₆NO₃S, 312.1633 m/z; observed, 312.1642 m/z.

Preparation of 25.

Sodium hydride (11 mg, 0.45 mmol, 4.0 eq) was suspended in 2 mL of dry THF and 2 mL dry HMPA. The latter aziridinol (35 mg, 0.11 mmol, 1.0 eq) was added. The suspension was stirred at rt overnight and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 80% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (2H, d, J = 8.2 Hz), 7.24 (2H, d, J = 8.0 Hz), 4.88 (1H, s), 2.61 (1H, s), 2.61 (1H, d, J = 9.3 Hz), 2.38-2.35 (4H, m), 1.61-1.41 (2H, m), 1.24-1.04 (10H, m), 0.80 (3H, t, J = 7.1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 142.9, 140.1, 129.4, 126.9, 60.6, 59.2, 49.4, 37.4, 25.3, 22.7, 22.0, 21.4, 17.4, 13.8; IR (thin film) 3285 (br), 2955, 2872, 1456, 1387, 1327, 1155, 1094, 978, 816 cm⁻¹; HRMS (ES) calcd for C₁₆H₂₆NO₃S, 312.1633 m/z; observed, 312.1619 m/z.

Preparation of 24a.

Sodium hydride (11 mg, 0.45 mmol, 4.0 eq) was suspended in 2 mL of dry THF and 2 mL dry HMPA. The latter aziridinol (35 mg, 0.11 mmol, 1.0 eq) was added. The suspension was stirred at rt overnight and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 80% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.71 (2H, d, J = 8.2 Hz), 7.24 (2H, d, J = 8.0 Hz), 4.88 (1H, s), 2.61 (1H, s), 2.61 (1H, d, J = 9.3 Hz), 2.38-2.35 (4H, m), 1.61-1.41 (2H, m), 1.24-1.04 (10H, m), 0.80 (3H, t, J = 7.1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 142.9, 140.1, 129.4, 126.9, 60.6, 59.2, 49.4, 37.4, 25.3, 22.7, 22.0, 21.4, 17.4, 13.8; IR (thin film) 3285 (br), 2955, 2872, 1456, 1387, 1327, 1155, 1094, 978, 816 cm⁻¹; HRMS (ES) calcd for C₁₆H₂₆NO₃S, 312.1633 m/z; observed, 312.1619 m/z.
The corresponding alkene (187 mg, 1.87 mmol) was placed in 15 mL of dry acetonitrile and treated with anhydrous Chloramine-T (426 mg, 1.87 mmol) and a catalytic amount of NBS (67 mg, 0.37 mmol) at rt. The reaction rapidly turned to bright yellow slurry. The reaction was stirred at rt overnight, the diluted with an equal amount of water. The reaction was extracted with portions of ethyl acetate (3x), the combined organic layer was washed with brine, dried over anhydrous sodium sulfate and the solvents were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the product in 41% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.76 (2H, d, J = 8.2 \text{ Hz}), 7.26 (2H, d, J = 8.2 \text{ Hz}), 3.96-3.89 (1H, m), 3.72-3.63 (1H, m), 2.39 (3H, s), 1.56 (3H, s), 1.47 (3H, s), 1.45 (3H, s); \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 143.4, 129.5, 126.6, 126.2, 64.5, 56.6, 53.5, 21.4, 20.1, 19.9, 14.7\); IR (thin film) 3509 (br), 2957, 2928, 2861, 1464, 1381, 1288, 1156, 1090, 1040, 932 cm\(^{-1}\); HRMS (ES) calcd for C\(_{13}\)H\(_{20}\)NO\(_3\)S, 270.1164 m/z (M+H)+; observed, 270.1167 m/z.

Preparation of 25a.

Sodium hydride (25 mg, 1.03 mmol, 4.0 eq) was suspended in 3 mL of dry THF and 0.15 mL dry HMPA. The aziridinol (69 mg, 0.26 mmol, 1.0 eq) was added. The suspension was stirred at rt overnight and carefully quenched with saturated ammonium chloride solution. The aqueous layer was extracted (3x) with portions of ethyl acetate and the volatiles were removed via rotary evaporation. The residue was purified using column chromatography (8:2 hexanes/ethyl acetate) to give the desired product in 74% yield. \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.72 (2H, d, J = 8.2 \text{ Hz}), 7.25 (2H, d, J = 8.2 \text{ Hz}), 4.89 (1H, s), 2.90 (1H, d, J = 4.4 \text{ Hz}), 2.48 (1H, d, J = 4.4 \text{ Hz}), 2.38 (3H, s), 1.27 (3H, s), 1.21 (3H, s), 1.19 (3H, s); \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 143.0, 140.1, 129.5, 126.9, 61.2, 57.3, 51.8, 24.3, 23.0, 21.4, 17.3\); IR (thin film) 3277 (br), 2986, 2930, 1456, 1381, 1323, 1159, 1093, 999, 815 cm\(^{-1}\); HRMS (ES) calcd for C\(_{13}\)H\(_{20}\)NO\(_3\)S, 270.1164 m/z (M+H)+; observed, 270.1169 m/z.

Preparation of 36.
A solution of cis-2-buten-1,4-diol (6.0 g, 68.2 mmol, 1.0 eq) in 100 mL of a 4:1 THF:DMSO mixture was added dropwise to a suspension of NaH (6.0 g of a 60% dispersion in mineral oil, 150 mmol, 2.2 eq, washed 2x with dry pentane) in 600 mL of a 4:1 mixture of dry THF/DMSO. The mixture was stirred at rt for 30 min, then a solution of benzyl bromide (25.6 g, 150 mmol, 2.2 eq) in 100 mL of THF was added dropwise. The mixture was heated to 60 ºC overnight. After cooling, an equal volume of water was added and the mixture extracted 3x with 200 mL portions of diethyl ether. The combined organics were washed with brine, dried over sodium sulfate, and the solvent was removed under reduced pressure. The residue was column chromatographed using 9:1 hexanes/ethyl acetate to give the title compound as a clear to pale yellow oil (94% yield).

$\text{H NMR (300 MHz, CDCl}_3 \delta 7.4 (m, 10H), 5.85 (m, 2H), 4.55 (s, 4H), 4.1 (m, 4H); 13C NMR (75 MHz, CDCl}_3 \delta 138.0, 129.4, 128.3, 127.7, 127.6, 72.1, 65.6.$

The alkene (14.4 g, 53.7 mmol, 1.0 eq) was placed in 520 mL of dichloromethane and treated with mCPBA (13.2 g as a 77 wt% solid, 59.1 mmol, 1.1 eq). The reaction was stirred at rt for 3 hr, then washed 3x with portions of saturated sodium carbonate. The organics were dried over sodium sulfate, evaporated and the residue was purified via column chromatography (3:1 hexanes/ethyl acetate) to give the product in 67% yield.

$\text{H NMR (300 MHz, CDCl}_3 \delta 7.3 (m, 10H), 4.6 (d, J = 12.1 Hz, 2H), 4.5 (d, J = 12.1 Hz, 2H), 3.7 (dd, J = 11.3, 3.0 Hz, 2H), 3.55 (m, 2H), 3.25 (m, 2H); 13C NMR (75 MHz, CDCl}_3 \delta 137.6, 128.3, 127.7, 73.1, 67.9, 54.3.$

Preparation of 38.

The epoxide 36 (5.0 g, 1.0 eq, 17.6 mmol) was placed in 70 mL of 8:1 2-methoxyethanol:water. Sodium azide (5.7 g, 5.0 eq, 88.0 mmol) was added followed by ammonium chloride (1.9 g, 2.0 eq, 35.2 mmol). The reaction was heated to reflux for 3 h and the volatiles were removed via rotary evaporation. The resultant solid was extracted with 3 portions of chloroform and the combined organics were washed with a small amount of brine. The chloroform was dried over sodium sulfate and the solvent was removed via rotary evaporation followed by drying of the residue on a vacuum line overnight. The crude material (71% yield) was used in the subsequent step without purification.

$\text{H NMR (300 MHz, CDCl}_3 \delta 7.3 (m, 10H), 4.5 (s, 2H), 4.45 (s, 2H), 4.05 (d, J = 4.7, 1H), 3.9 (m, 1H), 3.7 (overlapping m, 3H), 3.55 (d, J = 5.8 Hz, 2H), 2.6 (br s, 1H); 13C NMR (75 MHz, CDCl}_3 \delta 137.5, 137.4, 129.4, 128.4, 128.3, 127.8, 127.77, 127.7, 126.9, 73.4, 70.9, 70.4, 62.1.$
The crude azido alcohol (6.5 g, 1.0 eq, 19.9 mmol) was placed in 200 mL of dry THF and triphenylphosphine (5.7 g, 1.1 eq, 21.9 mmol) was added. The reaction was heated to reflux for 4 h, then cooled to 0 °C with an ice bath. Toluenesulfonyl chloride (5.7 g, 1.5 eq, 30.0 mmol) and triethylamine (4.2 mL, 1.5 eq, 30.0 mmol) were added and the reaction allowed to stir at rt overnight. The reaction was diluted with saturated sodium bicarbonate and stirred vigorously for 5 min. Extraction with diethyl ether and washing of the organics with brine was followed by drying of the organics with MgSO₄. Purification via column chromatography (9:1 hexanes/ethyl acetate) gave the product 38 in 68% yield contaminated with a small amount of tosyl chloride. ¹H NMR (300 MHz, CDCl₃) δ 7.8 (d, J = 8.2 Hz, 2H), 7.2-7.4 (m, 12H), 4.45 (d, J = 11.8 Hz, 2H), 4.4 (d, J = 11.8 Hz, 2H), 3.4-3.6 (m, 4H), 3.15 (m, 2H), 2.4 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 137.5, 129.5, 128.3, 128.1, 127.7, 127.6, 72.8, 66.5, 41.8, 21.6.

Preparation of 37.

The epoxide 36 (0.25 g, 0.88 mmol, 1.0 eq) was added to a 0.4 M solution of dimethylsulfoxonium methylide (9 mL, 4.0 eq) in DMSO. The reaction was heated to 95 °C for 36 h and cooled to rt. The dark brown solution was diluted with 20 mL of water and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the oxetane in 76% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.3-7.4 (m, 10H), 4.65 (m, 4H), 4.4-4.6 (m, 4H), 3.6 (m, 2H), 3.45 (m, 2H).

Preparation of 39.
The aziridine 38 (0.25 g, 0.57 mmol, 1.0 eq) was added to a 0.4 M solution of dimethylsulfoxonium methyide (6 mL, 4.0 eq) in DMSO. The reaction was heated to 85 °C for 24 h and cooled to rt. The dark brown solution was diluted with 20 mL of water and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles evaporated. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the azetidine in 83% yield.

\[\text{1H NMR (300 MHz, CDCl}_3 \text{)} \delta 7.7 \text{ (d, 2H, } J = 8.2 \text{ Hz)}, 7.2-7.3 \text{ (m, 12H), 4.6 (d, 1H, } J = 12.1 \text{ Hz)}, 4.55 \text{ (d, 1H, } J = 12.3 \text{ Hz)}, 4.2 \text{ (s, 2H), 3.9 (m, 1H), 3.8 (t, 1H, 8.0 Hz) 3.7 (overlapping dd, 2H), 3.5 (t, 1H, } J = 7.7 \text{ Hz)}, 3.1 \text{ (m, 2H), 2.8 (m, 1H), 2.4 (s, 3H); }\text{ } \text{13C NMR (75 MHz, CDCl}_3 \text{)} \delta 143.7, 138.1, 137.8, 132.0, 129.5, 128.3, 127.6, 127.5, 127.3, 73.5, 72.8, 71.3, 69.4, 64.8, 50.8, 32.5, 21.5.\]

Competition experiment between 36 and 38. A solution of the aziridine 38 (0.31 g, 0.7 mmol, 1.0 eq) and the epoxide 36 (0.2 g, 0.7 mmol, 1.0 eq) were added to a 0.1 M solution of dimethylsulfoxonium methyide in DMSO (7 mL, 0.7 mmol, 1.0 eq) and the reaction heated to 85 °C for 24 h and cooled to rt. The dark brown solution was diluted with 20 mL of water and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the epoxide back in 95% recovery and the azetidine in 64% yield.

Preparation of 40.

The BusNNaCl was prepared according to the method of Sharpless.22 The allylic alcohol (1.0 g, 5.6 mmol, 1.0 eq) was placed in 30 mL of dry acetonitrile and treated with BusNNaCl (1.3 g, 6.7 mmol, 1.2 eq) and phenyltrimethylammonium tribromide (0.2 g, 0.6 mmol, 0.1 eq). The light yellow slurry was stirred at rt overnight, diluted with an equal volume of water and extracted with portions of ethyl acetate. The combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed by rotary evaporation. The residue was purified via column chromatography (8:2 hexanes/ethyl acetate) to give the desired aziridinol in 74% yield as a mushy white solid.

\[\text{1H NMR (300 MHz, CDCl}_3 \text{)} \delta 7.2-7.4 \text{ (m, 5H), 4.55 (d, 1H, } J = 11.8 \text{ Hz)}, 4.45 \text{ (d, 1H, } J = 11.8 \text{ Hz)}, 3.7-3.8 \text{ (br m, 2H), 3.6 (m, 1H), 3.55 (dd, 1H, } J = 5.5, 10.7 \text{ Hz)}, 3.0 \text{ (m, 2H), 2.8 (br s, 1H), 1.4 (s, 9H); }\text{ } \text{13C NMR (75 MHz, CDCl}_3 \text{)} \delta 137.1, 128.4, 127.8, 127.6, 127.5, 127.3, 73.5, 72.8, 71.3, 69.4, 64.8, 50.8, 32.5, 21.5.\]
Preparation of 40a.

The aziridinol (0.25 g, 0.8 mmol, 1.0 eq) was placed in 8 mL of dry THF and NaH (0.13 g as a 60% dispersion in mineral oil, 4.0 eq, 3.2 mmol) was added. The reaction was stirred at rt for 6 h, then cooled to 0 °C and quenched carefully with saturated ammonium chloride. The aqueous layer was extracted 3x with portions of ether and the combined organics were washed with brine. The organics were dried over sodium sulfate and the volatiles removed via rotary evaporation. The residue was purified by column chromatography (hexanes/ethyl acetate gradient) to give the epoxy amine in 70% yield.

1H NMR (300 MHz, CDCl3) δ 7.2-7.4 (m, 5H), 4.55 (s, 2H), 4.25 (d, 1H, J = 9.9 Hz), 3.7 (m, 1H), 3.6 (d, 2H, J = 4.4 Hz), 3.2 (dd, 1H, J = 6.7, 3.8 Hz), 2.82 (m, 1H), 2.75 (m, 1H), 1.4 (s, 9H); 13C NMR (75 MHz, CDCl3) δ 137.2, 128.1, 127.5, 127.4, 73.2, 70.8, 59.8, 53.6, 51.8, 44.1, 23.8. HRMS calculated [M + H]+: 314.1426; observed: 314.1416.

Preparation of 40b.

Dimethylsulfoxide was dried by stirring overnight over CaH2 and distilled under high vacuum into a flame-dried flask containing molecular sieves. Trimethylsulfonium iodide was dried overnight at rt under high vacuum. Dimethylsulfoxonium methylide was prepared fresh for each reaction. Sodium hydride (0.51 g as a 60% dispersion in mineral oil, 12.8 mmol, 8.0 eq, washed twice with pentane dried over sodium metal) was placed in a flame-dried flask and dry dimethylsulfoxide (16 mL) was added via syringe. Trimethylsulfonium iodide (2.8 g, 12.8 mmol, 8.0 eq) was added in small portions over 20-30 min. After addition of the trimethylsulfonium iodide was complete, the reaction was stirred for an additional 30 min until the bubbling of the milk-white suspension ceased. The aziridinol (0.5 g, 1.6 mmol, 1.0 eq) dissolved in a small amount of DMSO was added dropwise and the reaction stirred at rt for 4 h to complete the aza-Payne rearrangement. The reaction was then covered with aluminum foil and heated to 80-85 °C for 36 h. The dark brown mixture was cooled and diluted with 2x volume of water and 1 mL of saturated ammonium chloride. The reaction was extracted several times with ethyl acetate, the combined organics were washed with brine and dried over sodium sulfate. After evaporation, the residue was column chromatographed using a hexane/ethyl acetate gradient to give compound 40b in 74% yield as a thick oil that eventually crystallized to a mushy solid. 1H NMR (300 MHz, CDCl3) δ 7.3 (m, 5H), 4.4-4.6 (overlapping signals, 3H), 4.2 (br m, 1H), 3.6-3.9 (m, 3H), 3.35 (m, 1H), 3.2 (m, 1H), 3.1 (m, 1H), 2.8 (m, 1H), 2.7 (m, 1H), 2.5 (m, 1H), 2.4 (m, 1H), 2.3 (m, 1H), 2.2 (m, 1H), 2.1 (m, 1H), 2.0 (m, 1H), 1.9 (m, 1H), 1.8 (m, 1H), 1.7 (m, 1H), 1.6 (m, 1H), 1.5 (m, 1H), 1.4 (m, 1H), 1.3 (m, 1H), 1.2 (m, 1H), 1.1 (m, 1H), 1.0 (m, 1H), 0.9 (m, 1H), 0.8 (m, 1H), 0.7 (m, 1H), 0.6 (m, 1H), 0.5 (m, 1H), 0.4 (m, 1H), 0.3 (m, 1H), 0.2 (m, 1H), 0.1 (m, 1H). HRMS calculated [M + H]+: 314.1426; observed: 314.1416.
1.9 (m, 2H), 1.3 (s, 9H); 13C NMR (75 MHz, CDCl$_3$) δ 137.2, 128.4, 127.9, 127.7, 73.4, 72.3, 69.2, 61.8, 60.3, 48.8, 34.7, 24.2. HRMS calculated [M + H]$^+$: 328.1583; observed: 328.1569.

Preparation of 41.

![Diagram](image)

Cinnamyl alcohol (0.5 g, 3.7 mmol, 1 eq) was placed in acetonitrile (20 mL) Anhydrous BusNNaCl (0.87 g, 4.5 mmol. 1.2 eq) and phenyltrimethylammonium tribromide (0.14 g, 0.37 mmol, 0.1 eq) were added successively and the reaction allowed to stir for 36 h. The reaction mixture was diluted with water and extracted 3x with portions of ethyl acetate. The combined organics were washed with brine and dried over magnesium sulfate. The crude product was purified via column chromatography (hexanes/ethyl acetate) to give the aziridinol 41 in 97% yield. 1H-NMR (300 MHz, CDCl$_3$) δ 7.1-7.3 (m, 5H), 4.1 (m, 1H), 3.95 (m, 1H), 3.7 (d, 1H, $J = 4.1$ Hz), 3.4 (dd, 1H, $J = 9.9, 4.4$ Hz), 3.0 (m, 1H), 1.3 (s, 9H); 13C NMR (75 MHz, CDCl$_3$) δ 134.5, 128.4, 128.1, 125.9, 60.3, 59.8, 53.1, 46.1, 23.4. HRMS calculated [M + H]$^+$: 270.1164; observed: 270.1165.

Preparation of 41a.

![Diagram](image)

The aziridinol (0.2 g, 0.74 mmol, 1.0 eq) was dissolved in 8 mL of dry tetrahydrofuran and treated with NaH (0.12 g as a 60% dispersion in mineral oil, 3.0 mmol, 4.0 eq). The reaction was stirred at rt for 6 h, cooled to 0 °C and quenched carefully with a saturated solution of ammonium chloride. The reaction was extracted 3x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were removed via rotary evaporation. The residue was purified via column chromatography (9:1 hexanes/ethyl acetate) to give the desired epoxy amine in 61% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.2-7.4 (m, 5H), 5.35 (d, 1H, $J = 9.3$ Hz), 4.6 (dd, 1H, $J = 9.3, 4.7$ Hz), 3.3 (m, 1H), 2.7 (dd, 1H, $J = 4.9, 4.1$ Hz), 2.45 (dd, 1H, $J = 4.9, 2.7$ Hz), 1.3 (s, 9H); 13C NMR (75 MHz, CDCl$_3$) δ 137.5, 128.7, 128.1, 127.3, 60.0, 58.7, 54.9, 46.1, 24.0. HRMS calculated [M + H]$^+$: 270.1164; observed: 270.1172.

Preparation of 41b.
The dimethylsulfoxonium methylide was formed as previously described from NaH (0.24 g as a 60% dispersion in mineral oil, 5.92 mmol, 8.0 eq) and trimethylsulfoxonium iodide (1.3 g, 5.92 mmol, 8.0 eq) in 6 mL of dry DMSO. The aziridinol (0.20 g, 0.74 mmol, 1.0 eq) was added and the reaction stirred at rt for 4 h and heated to 85 °C for 36 h, cooled and diluted with 15 mL of water. The aqueous layer was extracted 4x with portions of ethyl acetate, the combined organics were washed with brine, dried over sodium sulfate and the volatiles were evaporated. The residue was purified by column chromatography (9:1 hexanes/ethyl acetate to 1:1 hexanes/ethyl acetate) to give the product in 52% yield.

1H NMR (300 MHz, CDCl3) δ 7.3 (m, 5H), 5.1 (br s, 1H), 4.2 (br m, 1H), 4.1 (m, 1H), 3.6 (t of d, 1H, J = 9.9, 2.7 Hz), 3.0 (br s, 1H), 2.1 (m, 1H), 2.0 (m, 1H), 1.2-1.3 (2s, 9H);

13C NMR (75 MHz, CDCl3) δ 140.4, 128.5, 127.3, 126.3, 78.1, 72.5, 61.3, 48.6, 31.6, 24.4. HRMS calculated [M + H]+: 284.1320; observed: 284.1318.

Deprotection of Pyrrolidines. General Procedure.

Preparation of 8c.

Magnesium turnings (20.4 mg, 6.0 eq, 0.84 mmol) were crushed using a mortar and pestle and suspended in dry MeOH (1.4 mL). The pyrrolidine (50.0 mg, 1.0 eq, 0.14 mmol) was dissolved in 1.4 mL of MeOH and was added the reaction, which was sonicated for 30 min. The cloudy suspension was allowed to stir vigorously at rt overnight. A small amount of silica gel was added and the MeOH was removed via rotary evaporation. The silica was loaded directly onto a column and eluted first with 1:1 hexanes/ethyl acetate, then 1:1:0.1 hexanes/ethyl acetate/methanol. Finally, a mixture of methanol/triethylamine was used to elute the product in 64% yield.

1H NMR (300 MHz, CDCl3) δ 7.3 (m, 5H), 4.5 (d, 1H, J = 11.8 Hz), 4.45 (d, 1H, J = 11.8 Hz), 4.3 (m, 1H), 3.75 (d, 2H, J = 5.5 Hz), 3.4 (br s, 2H), 3.2 (m, 1H), 3.0 (dd, 1H, J = 9.9, 5.5 Hz), 2.8 (m, 1H), 1.95 (m, 1H), 1.75 (m, 1H);

13C NMR (75 MHz, CDCl3) δ 137.6, 128.5, 127.3, 126.3, 73.6, 72.9, 69.0, 62.6, 44.0, 35.2. HRMS calculated [M + H]+: 208.1338; observed: 208.1341.

Preparation of 42.

S55
The pyrrolidine 8b (0.1 g, 0.28 mmol, 1.0 eq) was dissolved in 1 mL of anhydrous DMF and treated with TBSCI (46.7 mg, 0.31 mmol, 1.1 eq), imidazole (47.7 mg, 0.7 mmol, 2.5 eq) and a catalytic amount of DMAP. The reaction was stirred overnight at rt, diluted with 2x the volume of water and extracted 3x with portions of diethyl ether. The combined organics were washed with brine, dried over sodium sulfate and the solvent was evaporated. The residue was purified using column chromatography (9:1 hexanes/ethyl acetate) to give the product in 96% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.7 (d, 2H, J = 8.2 Hz), 7.2-7.4 (d and m, 7H, J = 8.2 Hz), 4.5 (d, 2H, J = 16.8 Hz), 4.2 (dd, 1H, J = 9.8, 4.9 Hz), 3.8 (2 m, 2H), 3.6 (m, 1H), 3.4 (2 m, 2H), 2.4 (s, 3H), 1.7 (m, 1H), 1.35 (m, 1H), 0.9 (s, 9H), -0.4 (2 s, 6H); 13C NMR (75 MHz, CDCl$_3$) δ 143.4, 138.4, 134.7, 129.6, 128.2, 127.5, 127.4, 127.35, 73.3, 71.7, 68.7, 63.0, 46.7, 33.4, 25.7, 21.5, 17.9, -4.9, -5.2. HRMS calculated [M + H]$^+$: 476.2291; observed: 476.2291.

Preparation of 42c. The same procedure as previously described was applied to give the product in 56% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.3 (m, 5H), 4.5 (s, 2H), 4.3 (br m, 1H), 3.5-3.7 (m, 2H), 3.2 (overlapping dd, 1H), 3.1 (m, 1H), 2.9 (m, 1H), 2.3 (br s, 1H), 1.8 (m, 1H), 1.7 (m, 1H), 0.8 (s, 9H), 0.0 (s, 3H), -1.6 (s, 3H); 13C NMR (75 MHz, CDCl$_3$) δ 138.2, 128.3, 127.8, 127.5, 73.3, 72.2, 68.5, 62.5, 43.4, 35.1, 25.7, 18.0, -4.7, -5.2. HRMS calculated [M + H]$^+$: 322.2202; observed: 322.2189.

Preparation of 18c. The product was obtained in 65% yield. 1H NMR (300 MHz, CDCl$_3$) δ 7.3-7.4 (m, 5H), 4.55 (d, 1H, J = 11.7 Hz), 4.5 (d, 1H, J = 11.7 Hz), 4.0-4.4 (br s, 2H), 3.6 (dd, 1H, J = 9.8, 5.0 Hz), 3.48 (m, 1H), 3.38 (m, 1H), 3.0-3.25 (overlapping signals, 2H), 1.9 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ 137.7, 128.8, 128.4, 127.8, 78.7, 73.5, 69.3, 66.9, 43.5, 39.8, 22.5. HRMS calculated [M + H]$^+$: 222.1494; observed: 222.1488.
Preparation of 43. Dimethylsulfoxonium methylide (10.0 eq, 6.9 mmol) was prepared as previously as a 1 M solution in DMSO using trimethylsulfoxonium iodide and NaH. The aziridinol (0.25 g, 1.0 eq, 0.69 mmol) dissolved in a small amount of DMSO was added and the reaction stirred at rt for 4 h, followed by heating to 85 °C for 36 h. Following work-up and purification by column chromatography, the product was obtained in 70% yield. \(^1 \)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 7.7 (d, 2H, \(J = 8.8 \) Hz), 7.3 (m, 5H), 6.95 (d, 2H, \(J = 8.8 \) Hz), 4.5 (s, 2H), 4.2 (overlapping dd, 1H), 3.95 (dd, 1H, \(J = 9.6, 4.1 \) Hz), 3.85 (m, 1H), 3.6 (m, 1H), 3.5 (m, 1H), 3.2 (m, 1H), 2.95 (m, 1H), 1.8 (m, 1H), 1.5 (m, 1H); \(^{13} \)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 163.0, 137.4, 129.4, 128.5, 128.4, 127.9, 127.8, 114.2, 73.7, 72.5, 70.0, 61.1, 55.5, 46.7, 32.8. HRMS calculated [M + H]: 378.1375; observed: 378.1367.

Preparation of 43c. The product from above was subjected to treatment with Mg in methanol as previously described. Stirring at rt overnight led to only a 41% yield of the product at 78% conversion of the starting material, suggesting that the \(p \)-methoxysulfonamide group is more difficult to remove than the tosyl group.

Preparation of 40c. The pyrrolidine (0.1 g, 1.0 eq, 0.31 mmol) and \(p \)-anisole (0.77 g, 20.0 eq, 6.2 mmol) were combined in 10 mL of dry dichloromethane and cooled to 0 °C. A solution of triflic acid (0.3 g, 0.2 N in dichloromethane, 2 mmol) was added dropwise and the reaction stirred for 1 h. A 10% aqueous NaOH solution was added to quench the remaining acid and the reaction was extracted with 2 x 20 mL portions of dichloromethane, then ethyl acetate (to acetylated the nitrogen to facilitate isolation). The product was soluble in the water layer, so the aqueous was evaporated and the resulting solids subjected to Soxhlet extraction with ethyl acetate. The organics were removed via rotary evaporation and the residue purified using column chromatography (9:1 ethyl acetate/methanol containing 3% ammonium hydroxide) to yield the \(N \)-acetylated product in 88% yield. \(^1 \)H NMR (300 MHz, CDCl\(_3\)) \(\delta \) 4.5 (dd, 1H, \(J = 10.7, 5.2 \) Hz), 3.9-4.0 (m, 3H), 3.7-3.8 (m, 2H), 3.6 (m, 1H), 3.45 (m, 1H), 2.1 (s, 3H), 1.9-2.1 (m, 2H); \(^{13} \)C NMR (75 MHz, CDCl\(_3\)) \(\delta \) 171.5, 71.7, 63.4, 61.7, 46.4, 32.9, 22.7.
References:

Ph

NTs

OH