Syntheses, Luminescence Switching and Electrochemical Studies of Photochromic

Dithienyl-1,10-Phenanthroline Zinc(II) Bis(thiolate) Complexes

Tung-Wan Ngan, Chi-Chiu Ko, Nianyong Zhu, Vivian Wing-Wah Yam*

Department of Chemistry, and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

Supporting Information
Table S1 Crystal data and structure refinement for complex 4.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{37}H_{32}Cl_{2}N_{2}S_{4}Zn</td>
</tr>
<tr>
<td>Formula weight</td>
<td>769.16</td>
</tr>
<tr>
<td>Temperature</td>
<td>253(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2/1/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 15.205(3) Å</td>
</tr>
<tr>
<td></td>
<td>α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 8.952(2) Å</td>
</tr>
<tr>
<td></td>
<td>β = 91.49(3)°</td>
</tr>
<tr>
<td></td>
<td>c = 26.552(5) Å</td>
</tr>
<tr>
<td></td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>3612.9(12) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.414 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.088 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1584</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.7 x 0.2 x 0.1 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.06 to 25.17°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-15<=h<=15, -10<=k<=9, -31<=l<=31</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>13484</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4319 [R(int) = 0.0527]</td>
</tr>
<tr>
<td>Completeness to theta = 25.17°</td>
<td>66.6 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4319 / 0 / 419</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.847</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0376, wR2 = 0.0765</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0776, wR2 = 0.0828</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.435 and -0.236 eÅ⁻³</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Zn(1)</td>
<td>1422(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>2566(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>95(1)</td>
</tr>
<tr>
<td>S(3)</td>
<td>3628(1)</td>
</tr>
<tr>
<td>S(4)</td>
<td>4419(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>1567(2)</td>
</tr>
<tr>
<td>N(2)</td>
<td>1826(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>1454(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>1738(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2129(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2249(3)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1967(3)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2103(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>2512(3)</td>
</tr>
<tr>
<td>C(8)</td>
<td>2586(3)</td>
</tr>
<tr>
<td>C(9)</td>
<td>2285(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>1909(3)</td>
</tr>
<tr>
<td>C(11)</td>
<td>2660(3)</td>
</tr>
<tr>
<td>C(12)</td>
<td>2809(3)</td>
</tr>
<tr>
<td>C(13)</td>
<td>2531(4)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2200(4)</td>
</tr>
<tr>
<td>C(15)</td>
<td>2877(4)</td>
</tr>
<tr>
<td>C(16)</td>
<td>3610(5)</td>
</tr>
<tr>
<td>C(17)</td>
<td>4406(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>3566(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>2973(3)</td>
</tr>
<tr>
<td>C(20)</td>
<td>3286(3)</td>
</tr>
<tr>
<td>C(21)</td>
<td>4058(4)</td>
</tr>
<tr>
<td>C(22)</td>
<td>4582(3)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>C(23)</td>
<td>3417(3)</td>
</tr>
<tr>
<td>C(24)</td>
<td>3659(3)</td>
</tr>
<tr>
<td>C(25)</td>
<td>4363(3)</td>
</tr>
<tr>
<td>C(26)</td>
<td>4875(3)</td>
</tr>
<tr>
<td>C(27)</td>
<td>4617(4)</td>
</tr>
<tr>
<td>C(28)</td>
<td>3912(4)</td>
</tr>
<tr>
<td>C(29)</td>
<td>5692(3)</td>
</tr>
<tr>
<td>C(30)</td>
<td>116(3)</td>
</tr>
<tr>
<td>C(31)</td>
<td>442(3)</td>
</tr>
<tr>
<td>C(32)</td>
<td>438(3)</td>
</tr>
<tr>
<td>C(33)</td>
<td>114(3)</td>
</tr>
<tr>
<td>C(34)</td>
<td>-223(3)</td>
</tr>
<tr>
<td>C(35)</td>
<td>-211(3)</td>
</tr>
<tr>
<td>C(36)</td>
<td>136(4)</td>
</tr>
<tr>
<td>C(37)</td>
<td>1670(4)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>1216(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>2342(1)</td>
</tr>
</tbody>
</table>
Table S3 Bond lengths [Å] and angles [°] for complex 4

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-N(2)</td>
<td>2.082(3)</td>
<td>1.343(6)</td>
</tr>
<tr>
<td>Zn(1)-N(1)</td>
<td>2.086(3)</td>
<td>1.461(6)</td>
</tr>
<tr>
<td>Zn(1)-S(2)</td>
<td>2.2461(14)</td>
<td>1.375(6)</td>
</tr>
<tr>
<td>Zn(1)-S(1)</td>
<td>2.2719(13)</td>
<td>1.398(5)</td>
</tr>
<tr>
<td>S(1)-C(23)</td>
<td>1.772(4)</td>
<td>1.381(6)</td>
</tr>
<tr>
<td>S(2)-C(30)</td>
<td>1.760(4)</td>
<td>1.378(6)</td>
</tr>
<tr>
<td>S(3)-C(16)</td>
<td>1.727(6)</td>
<td>1.347(6)</td>
</tr>
<tr>
<td>S(3)-C(13)</td>
<td>1.770(6)</td>
<td>1.514(6)</td>
</tr>
<tr>
<td>S(4)-C(18)</td>
<td>1.630(5)</td>
<td>1.380(6)</td>
</tr>
<tr>
<td>S(4)-C(21)</td>
<td>1.734(5)</td>
<td>1.373(6)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.333(5)</td>
<td>1.387(5)</td>
</tr>
<tr>
<td>N(1)-C(5)</td>
<td>1.363(4)</td>
<td>1.386(5)</td>
</tr>
<tr>
<td>N(2)-C(10)</td>
<td>1.328(4)</td>
<td>1.375(6)</td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.357(4)</td>
<td>1.357(6)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.381(5)</td>
<td>1.517(6)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.386(5)</td>
<td>1.389(6)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.404(5)</td>
<td>1.719(5)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.395(5)</td>
<td>1.731(5)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.432(5)</td>
<td>79.18(13)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.402(5)</td>
<td>112.32(9)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.411(5)</td>
<td>121.94(10)</td>
</tr>
<tr>
<td>C(7)-C(12)</td>
<td>1.438(5)</td>
<td>110.60(9)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.366(5)</td>
<td>103.61(9)</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.403(5)</td>
<td>121.42(5)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.364(5)</td>
<td>98.97(13)</td>
</tr>
<tr>
<td>C(11)-C(15)</td>
<td>1.526(6)</td>
<td>102.78(15)</td>
</tr>
<tr>
<td>C(12)-C(20)</td>
<td>1.495(5)</td>
<td>89.6(3)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.300(7)</td>
<td>93.4(3)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.500(7)</td>
<td>117.3(3)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.275(6)</td>
<td>129.0(3)</td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.468(7)</td>
<td>112.8(3)</td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.400(5)</td>
<td>118.7(3)</td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.446(6)</td>
<td>127.8(3)</td>
</tr>
</tbody>
</table>
Symmetry transformations used to generate equivalent atoms:

C(6)-N(2)-Zn(1) 113.3(2) C(19)-C(18)-S(4) 112.8(4)
N(1)-C(1)-C(2) 122.9(4) C(18)-C(19)-C(20) 110.7(4)
C(3)-C(2)-C(1) 119.9(4) C(21)-C(20)-C(19) 112.3(4)
C(2)-C(3)-C(4) 119.4(4) C(21)-C(20)-C(12) 123.1(4)
C(5)-C(4)-C(3) 117.0(4) C(19)-C(20)-C(12) 124.6(4)
C(5)-C(4)-C(11) 119.6(3) C(20)-C(21)-C(22) 129.4(4)
C(3)-C(4)-C(11) 123.4(4) C(20)-C(21)-S(4) 110.9(4)
N(1)-C(5)-C(4) 123.5(3) C(22)-C(21)-S(4) 119.6(4)
N(1)-C(5)-C(6) 116.8(4) C(24)-C(23)-C(28) 115.7(4)
C(4)-C(5)-C(6) 119.6(4) C(24)-C(23)-S(1) 122.2(4)
N(2)-C(6)-C(7) 123.3(3) C(28)-C(23)-S(1) 122.1(4)
N(2)-C(6)-C(5) 116.6(3) C(23)-C(24)-C(25) 122.6(4)
C(7)-C(6)-C(5) 120.0(4) C(26)-C(25)-C(24) 121.0(4)
C(6)-C(7)-C(8) 116.0(4) C(27)-C(26)-C(25) 116.6(5)
C(6)-C(7)-C(12) 119.8(3) C(27)-C(26)-C(29) 122.8(5)
C(8)-C(7)-C(12) 124.1(4) C(25)-C(26)-C(29) 120.7(5)
C(9)-C(8)-C(7) 118.8(4) C(27)-C(28)-C(23) 120.3(5)
N(2)-C(10)-C(9) 122.2(4) C(35)-C(30)-C(31) 116.3(4)
C(12)-C(11)-C(4) 121.0(4) C(35)-C(30)-S(2) 121.4(4)
C(12)-C(11)-C(15) 122.6(4) C(31)-C(30)-S(2) 122.3(4)
C(4)-C(11)-C(15) 116.4(4) C(32)-C(31)-C(30) 120.9(4)
C(11)-C(12)-C(7) 119.9(4) C(33)-C(32)-C(31) 122.0(4)
C(11)-C(12)-C(20) 121.4(4) C(34)-C(33)-C(32) 117.2(4)
C(7)-C(12)-C(20) 118.8(3) C(34)-C(33)-C(36) 121.7(5)
C(14)-C(13)-S(3) 113.2(5) C(32)-C(33)-C(36) 121.1(5)
C(13)-C(14)-C(15) 109.9(6) C(33)-C(34)-C(35) 121.3(5)
C(16)-C(15)-C(14) 114.1(6) C(30)-C(35)-C(34) 122.2(4)
C(16)-C(15)-C(11) 124.5(6) Cl(1)-C(37)-Cl(2) 113.6(3)
C(14)-C(15)-C(11) 121.2(5)
C(15)-C(16)-C(17) 128.7(6)
C(15)-C(16)-S(3) 113.1(5)
C(17)-C(16)-S(3) 118.2(5)
Table S4 Anisotropic displacement parameters (Å2×103) for complex 4. The anisotropic displacement factor exponent takes the form: -2π2[h^2α^2U11 + ... + 2hka*b*U12]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>53(1)</td>
<td>52(1)</td>
<td>49(1)</td>
<td>-10(1)</td>
<td>11(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>66(1)</td>
<td>75(1)</td>
<td>57(1)</td>
<td>-23(1)</td>
<td>7(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>54(1)</td>
<td>75(1)</td>
<td>70(1)</td>
<td>-17(1)</td>
<td>20(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>S(3)</td>
<td>97(1)</td>
<td>88(1)</td>
<td>55(1)</td>
<td>15(1)</td>
<td>30(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>S(4)</td>
<td>108(1)</td>
<td>72(1)</td>
<td>87(1)</td>
<td>-8(1)</td>
<td>34(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>45(2)</td>
<td>39(2)</td>
<td>48(3)</td>
<td>-8(2)</td>
<td>4(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>N(2)</td>
<td>45(2)</td>
<td>40(2)</td>
<td>42(3)</td>
<td>3(2)</td>
<td>4(2)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>60(3)</td>
<td>42(3)</td>
<td>62(4)</td>
<td>-8(3)</td>
<td>9(3)</td>
<td>9(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>87(4)</td>
<td>35(3)</td>
<td>60(4)</td>
<td>1(2)</td>
<td>5(3)</td>
<td>12(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>78(4)</td>
<td>49(3)</td>
<td>47(3)</td>
<td>8(3)</td>
<td>7(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>48(3)</td>
<td>37(3)</td>
<td>47(3)</td>
<td>1(2)</td>
<td>7(3)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>41(3)</td>
<td>33(2)</td>
<td>36(3)</td>
<td>-4(2)</td>
<td>-2(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>35(3)</td>
<td>43(3)</td>
<td>32(3)</td>
<td>-4(2)</td>
<td>5(2)</td>
<td>-8(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>42(3)</td>
<td>41(2)</td>
<td>39(3)</td>
<td>-3(2)</td>
<td>5(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>61(3)</td>
<td>37(3)</td>
<td>51(3)</td>
<td>0(2)</td>
<td>10(3)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>70(4)</td>
<td>44(3)</td>
<td>47(3)</td>
<td>7(2)</td>
<td>13(3)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>56(3)</td>
<td>63(3)</td>
<td>36(3)</td>
<td>0(2)</td>
<td>9(2)</td>
<td>-6(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>65(3)</td>
<td>47(3)</td>
<td>30(3)</td>
<td>0(2)</td>
<td>16(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>44(3)</td>
<td>40(3)</td>
<td>41(3)</td>
<td>-2(2)</td>
<td>6(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>108(6)</td>
<td>113(4)</td>
<td>95(6)</td>
<td>-5(4)</td>
<td>-8(4)</td>
<td>0(4)</td>
</tr>
<tr>
<td>C(14)</td>
<td>91(5)</td>
<td>107(4)</td>
<td>39(4)</td>
<td>14(3)</td>
<td>10(4)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(15)</td>
<td>80(5)</td>
<td>45(3)</td>
<td>89(5)</td>
<td>-3(3)</td>
<td>21(4)</td>
<td>16(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>105(6)</td>
<td>51(3)</td>
<td>94(5)</td>
<td>-6(3)</td>
<td>33(5)</td>
<td>28(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>51(4)</td>
<td>81(3)</td>
<td>126(6)</td>
<td>-14(3)</td>
<td>-17(4)</td>
<td>4(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>98(4)</td>
<td>62(3)</td>
<td>51(4)</td>
<td>-22(3)</td>
<td>18(3)</td>
<td>3(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>98(4)</td>
<td>53(3)</td>
<td>55(4)</td>
<td>-11(3)</td>
<td>17(3)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(20)</td>
<td>57(3)</td>
<td>46(3)</td>
<td>49(3)</td>
<td>6(2)</td>
<td>12(3)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>78(4)</td>
<td>60(3)</td>
<td>45(3)</td>
<td>2(3)</td>
<td>10(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>71(4)</td>
<td>95(4)</td>
<td>81(5)</td>
<td>8(3)</td>
<td>18(4)</td>
<td>17(3)</td>
</tr>
<tr>
<td>C(23)</td>
<td>47(3)</td>
<td>52(3)</td>
<td>52(4)</td>
<td>-12(2)</td>
<td>-4(3)</td>
<td>-10(2)</td>
</tr>
<tr>
<td>C(24)</td>
<td>59(4)</td>
<td>50(3)</td>
<td>70(4)</td>
<td>-2(3)</td>
<td>2(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>70(4)</td>
<td>58(3)</td>
<td>63(4)</td>
<td>-1(3)</td>
<td>8(3)</td>
<td>-4(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C(26)</td>
<td>49(4)</td>
<td>85(4)</td>
<td>62(4)</td>
<td>-20(3)</td>
<td>0(3)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(27)</td>
<td>61(4)</td>
<td>84(4)</td>
<td>80(5)</td>
<td>-4(3)</td>
<td>-10(4)</td>
<td>25(3)</td>
</tr>
<tr>
<td>C(28)</td>
<td>77(4)</td>
<td>66(3)</td>
<td>64(4)</td>
<td>7(3)</td>
<td>-7(3)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(29)</td>
<td>63(4)</td>
<td>145(5)</td>
<td>104(5)</td>
<td>-47(4)</td>
<td>7(4)</td>
<td>3(3)</td>
</tr>
<tr>
<td>C(30)</td>
<td>40(3)</td>
<td>63(3)</td>
<td>47(3)</td>
<td>-5(2)</td>
<td>8(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(31)</td>
<td>64(3)</td>
<td>61(3)</td>
<td>52(3)</td>
<td>4(3)</td>
<td>16(3)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(32)</td>
<td>70(4)</td>
<td>57(3)</td>
<td>71(4)</td>
<td>-4(3)</td>
<td>7(3)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(33)</td>
<td>56(4)</td>
<td>79(4)</td>
<td>57(4)</td>
<td>-14(3)</td>
<td>-6(3)</td>
<td>21(3)</td>
</tr>
<tr>
<td>C(34)</td>
<td>75(4)</td>
<td>93(4)</td>
<td>48(4)</td>
<td>-4(3)</td>
<td>21(3)</td>
<td>19(3)</td>
</tr>
<tr>
<td>C(35)</td>
<td>60(3)</td>
<td>76(3)</td>
<td>61(4)</td>
<td>11(3)</td>
<td>18(3)</td>
<td>6(3)</td>
</tr>
<tr>
<td>C(36)</td>
<td>109(5)</td>
<td>107(4)</td>
<td>85(4)</td>
<td>-41(4)</td>
<td>-4(4)</td>
<td>30(3)</td>
</tr>
<tr>
<td>C(37)</td>
<td>158(6)</td>
<td>95(4)</td>
<td>71(5)</td>
<td>3(3)</td>
<td>-6(4)</td>
<td>-21(4)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>193(2)</td>
<td>108(1)</td>
<td>83(1)</td>
<td>16(1)</td>
<td>-7(1)</td>
<td>-16(1)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>182(2)</td>
<td>157(2)</td>
<td>90(1)</td>
<td>16(1)</td>
<td>-17(1)</td>
<td>-51(1)</td>
</tr>
</tbody>
</table>
Table S5 Hydrogen coordinates ($\times10^4$) and isotropic displacement parameters ($\AA^2\times10^3$) for complex 4.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>1172</td>
<td>9541</td>
<td>1751</td>
<td>66</td>
</tr>
<tr>
<td>H(2)</td>
<td>1664</td>
<td>10017</td>
<td>959</td>
<td>73</td>
</tr>
<tr>
<td>H(3)</td>
<td>2315</td>
<td>8149</td>
<td>504</td>
<td>70</td>
</tr>
<tr>
<td>H(8)</td>
<td>2843</td>
<td>1607</td>
<td>1662</td>
<td>60</td>
</tr>
<tr>
<td>H(9)</td>
<td>2329</td>
<td>1420</td>
<td>2465</td>
<td>64</td>
</tr>
<tr>
<td>H(10)</td>
<td>1712</td>
<td>3506</td>
<td>2841</td>
<td>62</td>
</tr>
<tr>
<td>H(13)</td>
<td>2223</td>
<td>5517</td>
<td>-908</td>
<td>127</td>
</tr>
<tr>
<td>H(14)</td>
<td>1629</td>
<td>4974</td>
<td>-122</td>
<td>95</td>
</tr>
<tr>
<td>H(17A)</td>
<td>4279</td>
<td>7233</td>
<td>616</td>
<td>130</td>
</tr>
<tr>
<td>H(17B)</td>
<td>4861</td>
<td>6740</td>
<td>167</td>
<td>130</td>
</tr>
<tr>
<td>H(17C)</td>
<td>4600</td>
<td>5574</td>
<td>577</td>
<td>130</td>
</tr>
<tr>
<td>H(18)</td>
<td>3482</td>
<td>224</td>
<td>-70</td>
<td>84</td>
</tr>
<tr>
<td>H(19)</td>
<td>2451</td>
<td>2181</td>
<td>167</td>
<td>82</td>
</tr>
<tr>
<td>H(22A)</td>
<td>4533</td>
<td>3709</td>
<td>1456</td>
<td>123</td>
</tr>
<tr>
<td>H(22B)</td>
<td>5188</td>
<td>2391</td>
<td>1362</td>
<td>123</td>
</tr>
<tr>
<td>H(22C)</td>
<td>4371</td>
<td>2143</td>
<td>1701</td>
<td>123</td>
</tr>
<tr>
<td>H(24)</td>
<td>3336</td>
<td>9308</td>
<td>2079</td>
<td>72</td>
</tr>
<tr>
<td>H(25)</td>
<td>4492</td>
<td>8719</td>
<td>1583</td>
<td>76</td>
</tr>
<tr>
<td>H(27)</td>
<td>4931</td>
<td>5089</td>
<td>2388</td>
<td>90</td>
</tr>
<tr>
<td>H(28)</td>
<td>3766</td>
<td>5614</td>
<td>2883</td>
<td>83</td>
</tr>
<tr>
<td>H(29A)</td>
<td>5536</td>
<td>6520</td>
<td>1301</td>
<td>156</td>
</tr>
<tr>
<td>H(29B)</td>
<td>5949</td>
<td>5636</td>
<td>1759</td>
<td>156</td>
</tr>
<tr>
<td>H(29C)</td>
<td>6108</td>
<td>7360</td>
<td>1712</td>
<td>156</td>
</tr>
<tr>
<td>H(31)</td>
<td>665</td>
<td>9824</td>
<td>2896</td>
<td>70</td>
</tr>
<tr>
<td>H(32)</td>
<td>662</td>
<td>11756</td>
<td>3464</td>
<td>79</td>
</tr>
<tr>
<td>H(34)</td>
<td>-466</td>
<td>9172</td>
<td>4466</td>
<td>86</td>
</tr>
<tr>
<td>H(35)</td>
<td>-432</td>
<td>7208</td>
<td>3912</td>
<td>78</td>
</tr>
<tr>
<td>H(36A)</td>
<td>719</td>
<td>12047</td>
<td>4550</td>
<td>150</td>
</tr>
<tr>
<td>H(36B)</td>
<td>-269</td>
<td>11748</td>
<td>4671</td>
<td>150</td>
</tr>
<tr>
<td>H(36C)</td>
<td>-30</td>
<td>12856</td>
<td>4238</td>
<td>150</td>
</tr>
<tr>
<td>H(37A)</td>
<td>1200</td>
<td>9358</td>
<td>-1230</td>
<td>130</td>
</tr>
<tr>
<td>H(37B)</td>
<td>2011</td>
<td>8455</td>
<td>-1018</td>
<td>130</td>
</tr>
</tbody>
</table>
Table S6 Crystal data and structure refinement for complex 6(1)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula C${34}$H${26}$N$_2$S$_4$Zn</td>
<td></td>
</tr>
<tr>
<td>Formula weight</td>
<td>656.18</td>
</tr>
<tr>
<td>Temperature</td>
<td>301(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 2$_1$/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a = 25.168(5) Å</td>
<td>$\alpha = 90^\circ$.</td>
</tr>
<tr>
<td>b = 14.457(3) Å</td>
<td>$\beta = 91.28(3)^\circ$.</td>
</tr>
<tr>
<td>c = 17.048(3) Å</td>
<td>$\gamma = 90^\circ$.</td>
</tr>
<tr>
<td>Volume</td>
<td>6201(2) Å</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.406 Mg/m3.</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.088 mm$^{-1}$.</td>
</tr>
<tr>
<td>F(000)</td>
<td>2704</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.6 x 0.3 x 0.2 mm3.</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.62 to 25.34°.</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-29<=$h<$29, -17<=$k<$16, -18<=$l<$17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>29036</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>8288 [R(int) = 0.0468]</td>
</tr>
<tr>
<td>Completeness to theta 25.34°</td>
<td>73.0 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>8288 / 0 / 743</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>0.883</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0422, wR2 = 0.0956</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0864, wR2 = 0.1039</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.334 and -0.293 e.Å$^{-3}$</td>
</tr>
</tbody>
</table>
Table S7 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for complex 6. $U(\text{eq})$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$U(\text{eq})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>4137(1)</td>
<td>1232(1)</td>
<td>1570(1)</td>
<td>61(1)</td>
</tr>
<tr>
<td>Zn(2)</td>
<td>-818(1)</td>
<td>1190(1)</td>
<td>1716(1)</td>
<td>66(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>3667(1)</td>
<td>2443(1)</td>
<td>1106(1)</td>
<td>85(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>3906(1)</td>
<td>-280(1)</td>
<td>1489(1)</td>
<td>70(1)</td>
</tr>
<tr>
<td>S(3)</td>
<td>6701(1)</td>
<td>1196(1)</td>
<td>5383(1)</td>
<td>88(1)</td>
</tr>
<tr>
<td>S(4)</td>
<td>7697(1)</td>
<td>950(2)</td>
<td>2622(1)</td>
<td>140(1)</td>
</tr>
<tr>
<td>S(5)</td>
<td>-1020(1)</td>
<td>2711(1)</td>
<td>1622(1)</td>
<td>123(1)</td>
</tr>
<tr>
<td>S(6)</td>
<td>-1338(1)</td>
<td>50(1)</td>
<td>1250(1)</td>
<td>72(1)</td>
</tr>
<tr>
<td>S(7)</td>
<td>2742(1)</td>
<td>907(1)</td>
<td>2317(1)</td>
<td>84(1)</td>
</tr>
<tr>
<td>S(8)</td>
<td>1823(1)</td>
<td>1022(1)</td>
<td>5428(1)</td>
<td>99(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>4477(1)</td>
<td>1510(2)</td>
<td>2678(2)</td>
<td>51(1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>4950(1)</td>
<td>1307(2)</td>
<td>1310(2)</td>
<td>53(1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>-20(1)</td>
<td>947(2)</td>
<td>1436(2)</td>
<td>56(1)</td>
</tr>
<tr>
<td>N(4)</td>
<td>-465(1)</td>
<td>1011(2)</td>
<td>2837(2)</td>
<td>62(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4232(2)</td>
<td>1660(3)</td>
<td>3346(2)</td>
<td>60(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>4506(2)</td>
<td>1792(3)</td>
<td>4056(2)</td>
<td>63(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5048(2)</td>
<td>1745(3)</td>
<td>4072(2)</td>
<td>57(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>5327(2)</td>
<td>1566(3)</td>
<td>3384(2)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>5013(2)</td>
<td>1478(2)</td>
<td>2694(2)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>5273(2)</td>
<td>1376(2)</td>
<td>1952(2)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>5822(2)</td>
<td>1360(3)</td>
<td>1930(2)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>6047(2)</td>
<td>1266(3)</td>
<td>1182(2)</td>
<td>68(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>5719(2)</td>
<td>1209(3)</td>
<td>531(2)</td>
<td>73(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>5178(2)</td>
<td>1228(3)</td>
<td>617(2)</td>
<td>69(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>5897(2)</td>
<td>1509(3)</td>
<td>3352(2)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>6142(2)</td>
<td>1416(3)</td>
<td>2646(2)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>6880(2)</td>
<td>2188(4)</td>
<td>4920(2)</td>
<td>93(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>6599(2)</td>
<td>2322(3)</td>
<td>4246(2)</td>
<td>66(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>6227(2)</td>
<td>1578(3)</td>
<td>4092(2)</td>
<td>56(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>6229(2)</td>
<td>935(3)</td>
<td>4660(2)</td>
<td>71(1)</td>
</tr>
<tr>
<td>C(17)</td>
<td>5914(2)</td>
<td>65(3)</td>
<td>4714(2)</td>
<td>95(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>7544(3)</td>
<td>1973(6)</td>
<td>2232(3)</td>
<td>160(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>7018(2)</td>
<td>2177(4)</td>
<td>2241(3)</td>
<td>97(2)</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>C(20)</td>
<td>6729(2)</td>
<td>1398(4)</td>
<td>2579(2)</td>
<td>74(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>7035(2)</td>
<td>703(5)</td>
<td>2813(3)</td>
<td>100(2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>6898(2)</td>
<td>-172(4)</td>
<td>3183(3)</td>
<td>122(2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>3412(2)</td>
<td>2146(3)</td>
<td>175(2)</td>
<td>65(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>3551(2)</td>
<td>1375(4)</td>
<td>-234(3)</td>
<td>86(2)</td>
</tr>
<tr>
<td>C(25)</td>
<td>3347(3)</td>
<td>1213(4)</td>
<td>-988(3)</td>
<td>120(2)</td>
</tr>
<tr>
<td>C(26)</td>
<td>3006(3)</td>
<td>1845(5)</td>
<td>-1328(3)</td>
<td>127(2)</td>
</tr>
<tr>
<td>C(27)</td>
<td>2861(2)</td>
<td>2613(5)</td>
<td>-913(3)</td>
<td>110(2)</td>
</tr>
<tr>
<td>C(28)</td>
<td>3062(2)</td>
<td>2761(3)</td>
<td>-178(3)</td>
<td>85(2)</td>
</tr>
<tr>
<td>C(29)</td>
<td>4405(2)</td>
<td>-714(3)</td>
<td>2129(2)</td>
<td>56(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>4286(2)</td>
<td>-916(3)</td>
<td>2905(3)</td>
<td>80(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>4669(3)</td>
<td>-1228(4)</td>
<td>3409(3)</td>
<td>120(3)</td>
</tr>
<tr>
<td>C(32)</td>
<td>5171(4)</td>
<td>-1342(4)</td>
<td>3201(6)</td>
<td>137(4)</td>
</tr>
<tr>
<td>C(33)</td>
<td>5310(3)</td>
<td>-1169(4)</td>
<td>2433(5)</td>
<td>120(2)</td>
</tr>
<tr>
<td>C(34)</td>
<td>4919(2)</td>
<td>-862(3)</td>
<td>1895(3)</td>
<td>84(2)</td>
</tr>
<tr>
<td>C(35)</td>
<td>190(2)</td>
<td>877(3)</td>
<td>727(2)</td>
<td>65(1)</td>
</tr>
<tr>
<td>C(36)</td>
<td>722(2)</td>
<td>711(3)</td>
<td>624(2)</td>
<td>70(1)</td>
</tr>
<tr>
<td>C(37)</td>
<td>1065(2)</td>
<td>640(3)</td>
<td>1260(2)</td>
<td>64(1)</td>
</tr>
<tr>
<td>C(38)</td>
<td>858(2)</td>
<td>746(3)</td>
<td>2019(2)</td>
<td>52(1)</td>
</tr>
<tr>
<td>C(39)</td>
<td>313(2)</td>
<td>874(3)</td>
<td>2064(2)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(40)</td>
<td>70(2)</td>
<td>910(3)</td>
<td>2826(2)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(41)</td>
<td>401(2)</td>
<td>845(3)</td>
<td>3502(2)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(42)</td>
<td>136(2)</td>
<td>911(3)</td>
<td>4221(2)</td>
<td>82(2)</td>
</tr>
<tr>
<td>C(43)</td>
<td>-400(2)</td>
<td>1028(4)</td>
<td>4234(3)</td>
<td>96(2)</td>
</tr>
<tr>
<td>C(44)</td>
<td>-694(2)</td>
<td>1065(3)</td>
<td>3533(3)</td>
<td>81(1)</td>
</tr>
<tr>
<td>C(45)</td>
<td>1193(2)</td>
<td>698(3)</td>
<td>2729(2)</td>
<td>56(1)</td>
</tr>
<tr>
<td>C(46)</td>
<td>967(2)</td>
<td>735(3)</td>
<td>3445(2)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(47)</td>
<td>2588(2)</td>
<td>-144(4)</td>
<td>2712(3)</td>
<td>95(2)</td>
</tr>
<tr>
<td>C(48)</td>
<td>2068(2)</td>
<td>-234(3)</td>
<td>2851(2)</td>
<td>75(1)</td>
</tr>
<tr>
<td>C(49)</td>
<td>1779(2)</td>
<td>598(4)</td>
<td>2651(2)</td>
<td>65(1)</td>
</tr>
<tr>
<td>C(50)</td>
<td>2094(2)</td>
<td>1253(4)</td>
<td>2363(2)</td>
<td>76(1)</td>
</tr>
<tr>
<td>C(51)</td>
<td>1953(2)</td>
<td>2205(3)</td>
<td>2086(3)</td>
<td>104(2)</td>
</tr>
<tr>
<td>C(52)</td>
<td>1754(2)</td>
<td>-133(4)</td>
<td>5168(3)</td>
<td>96(2)</td>
</tr>
<tr>
<td>C(53)</td>
<td>1462(2)</td>
<td>-230(3)</td>
<td>4516(2)</td>
<td>79(1)</td>
</tr>
<tr>
<td>C(54)</td>
<td>1295(2)</td>
<td>644(4)</td>
<td>4192(2)</td>
<td>66(1)</td>
</tr>
<tr>
<td>C(55)</td>
<td>1452(2)</td>
<td>1353(4)</td>
<td>4617(3)</td>
<td>83(2)</td>
</tr>
<tr>
<td>C(56)</td>
<td>1373(2)</td>
<td>2365(4)</td>
<td>4464(3)</td>
<td>130(2)</td>
</tr>
<tr>
<td>C(57)</td>
<td>-411(3)</td>
<td>3136(3)</td>
<td>1997(3)</td>
<td>87(2)</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>C(58)</td>
<td>2(3)</td>
<td>3243(4)</td>
<td>1485(4)</td>
<td>120(2)</td>
</tr>
<tr>
<td>C(59)</td>
<td>513(3)</td>
<td>3518(5)</td>
<td>1722(6)</td>
<td>160(3)</td>
</tr>
<tr>
<td>C(60)</td>
<td>528(6)</td>
<td>3633(9)</td>
<td>2561(9)</td>
<td>242(11)</td>
</tr>
<tr>
<td>C(61)</td>
<td>190(8)</td>
<td>3653(11)</td>
<td>3090(10)</td>
<td>262(11)</td>
</tr>
<tr>
<td>C(62)</td>
<td>-314(4)</td>
<td>3326(4)</td>
<td>2754(4)</td>
<td>169(4)</td>
</tr>
<tr>
<td>C(63)</td>
<td>-1702(2)</td>
<td>533(4)</td>
<td>450(3)</td>
<td>78(1)</td>
</tr>
<tr>
<td>C(64)</td>
<td>-2171(2)</td>
<td>113(4)</td>
<td>212(3)</td>
<td>117(2)</td>
</tr>
<tr>
<td>C(65)</td>
<td>-2450(3)</td>
<td>439(8)</td>
<td>-448(5)</td>
<td>167(4)</td>
</tr>
<tr>
<td>C(66)</td>
<td>-2267(5)</td>
<td>1139(8)</td>
<td>-874(5)</td>
<td>182(6)</td>
</tr>
<tr>
<td>C(67)</td>
<td>-1815(3)</td>
<td>1559(5)</td>
<td>-646(4)</td>
<td>150(3)</td>
</tr>
<tr>
<td>C(68)</td>
<td>-1526(2)</td>
<td>1258(4)</td>
<td>11(3)</td>
<td>106(2)</td>
</tr>
</tbody>
</table>
Table S8 Bond lengths [Å] and angles [°] for complex 6

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance [Å]</th>
<th>Distance [Å]</th>
<th>Distance [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-N(1)</td>
<td>2.096(3)</td>
<td>C(7)-C(12)</td>
<td>1.450(5)</td>
</tr>
<tr>
<td>Zn(1)-N(2)</td>
<td>2.105(3)</td>
<td>C(8)-C(9)</td>
<td>1.371(5)</td>
</tr>
<tr>
<td>Zn(1)-S(1)</td>
<td>2.2482(13)</td>
<td>C(9)-C(10)</td>
<td>1.372(6)</td>
</tr>
<tr>
<td>Zn(1)-S(2)</td>
<td>2.2659(13)</td>
<td>C(11)-C(12)</td>
<td>1.371(5)</td>
</tr>
<tr>
<td>Zn(2)-N(4)</td>
<td>2.105(3)</td>
<td>C(11)-C(15)</td>
<td>1.498(5)</td>
</tr>
<tr>
<td>Zn(2)-N(3)</td>
<td>2.105(3)</td>
<td>C(12)-C(20)</td>
<td>1.485(6)</td>
</tr>
<tr>
<td>Zn(2)-S(6)</td>
<td>2.2380(13)</td>
<td>C(13)-C(14)</td>
<td>1.350(5)</td>
</tr>
<tr>
<td>Zn(2)-S(5)</td>
<td>2.2620(16)</td>
<td>C(14)-C(15)</td>
<td>1.446(5)</td>
</tr>
<tr>
<td>S(1)-C(23)</td>
<td>1.751(4)</td>
<td>C(15)-C(16)</td>
<td>1.343(5)</td>
</tr>
<tr>
<td>S(2)-C(29)</td>
<td>1.761(4)</td>
<td>C(16)-C(17)</td>
<td>1.490(6)</td>
</tr>
<tr>
<td>S(3)-C(13)</td>
<td>1.703(5)</td>
<td>C(18)-C(19)</td>
<td>1.355(7)</td>
</tr>
<tr>
<td>S(3)-C(16)</td>
<td>1.734(4)</td>
<td>C(19)-C(20)</td>
<td>1.466(6)</td>
</tr>
<tr>
<td>S(4)-C(18)</td>
<td>1.663(8)</td>
<td>C(20)-C(21)</td>
<td>1.322(6)</td>
</tr>
<tr>
<td>S(4)-C(21)</td>
<td>1.741(6)</td>
<td>C(21)-C(22)</td>
<td>1.459(7)</td>
</tr>
<tr>
<td>S(5)-C(57)</td>
<td>1.757(6)</td>
<td>C(23)-C(24)</td>
<td>1.364(6)</td>
</tr>
<tr>
<td>S(6)-C(63)</td>
<td>1.770(5)</td>
<td>C(23)-C(28)</td>
<td>1.380(5)</td>
</tr>
<tr>
<td>S(7)-C(47)</td>
<td>1.710(5)</td>
<td>C(24)-C(25)</td>
<td>1.394(6)</td>
</tr>
<tr>
<td>S(7)-C(50)</td>
<td>1.711(5)</td>
<td>C(25)-C(26)</td>
<td>1.373(7)</td>
</tr>
<tr>
<td>S(8)-C(55)</td>
<td>1.718(5)</td>
<td>C(26)-C(27)</td>
<td>1.370(7)</td>
</tr>
<tr>
<td>S(8)-C(52)</td>
<td>1.735(5)</td>
<td>C(27)-C(28)</td>
<td>1.358(6)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.325(4)</td>
<td>C(29)-C(34)</td>
<td>1.379(6)</td>
</tr>
<tr>
<td>N(1)-C(5)</td>
<td>1.349(4)</td>
<td>C(29)-C(30)</td>
<td>1.395(5)</td>
</tr>
<tr>
<td>N(2)-C(10)</td>
<td>1.330(5)</td>
<td>C(30)-C(31)</td>
<td>1.354(7)</td>
</tr>
<tr>
<td>N(2)-C(6)</td>
<td>1.352(4)</td>
<td>C(31)-C(32)</td>
<td>1.331(9)</td>
</tr>
<tr>
<td>N(3)-C(35)</td>
<td>1.333(5)</td>
<td>C(32)-C(33)</td>
<td>1.386(9)</td>
</tr>
<tr>
<td>N(3)-C(39)</td>
<td>1.348(4)</td>
<td>C(33)-C(34)</td>
<td>1.403(7)</td>
</tr>
<tr>
<td>N(4)-C(44)</td>
<td>1.334(5)</td>
<td>C(35)-C(36)</td>
<td>1.375(5)</td>
</tr>
<tr>
<td>N(4)-C(40)</td>
<td>1.353(5)</td>
<td>C(36)-C(37)</td>
<td>1.375(5)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.393(5)</td>
<td>C(37)-C(38)</td>
<td>1.414(5)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.366(5)</td>
<td>C(38)-C(39)</td>
<td>1.388(5)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.404(5)</td>
<td>C(38)-C(45)</td>
<td>1.461(5)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.407(5)</td>
<td>C(39)-C(40)</td>
<td>1.450(5)</td>
</tr>
<tr>
<td>C(4)-C(11)</td>
<td>1.440(5)</td>
<td>C(40)-C(41)</td>
<td>1.410(5)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.444(5)</td>
<td>C(41)-C(42)</td>
<td>1.410(5)</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.384(5)</td>
<td>C(41)-C(46)</td>
<td>1.440(5)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.413(5)</td>
<td>C(42)-C(43)</td>
<td>1.361(6)</td>
</tr>
</tbody>
</table>
C(43)-C(44) 1.393(6) C(29)-S(2)-Zn(1) 97.29(13)
C(45)-C(46) 1.359(5) C(13)-S(3)-C(16) 92.2(2)
C(45)-C(49) 1.491(6) C(18)-S(4)-C(21) 92.4(3)
C(46)-C(54) 1.508(5) C(57)-S(5)-Zn(2) 96.98(17)
C(47)-C(48) 1.341(6) C(63)-S(6)-Zn(2) 105.78(19)
C(48)-C(49) 1.443(6) C(47)-S(7)-C(50) 91.0(3)
C(49)-C(50) 1.336(6) C(55)-S(8)-C(52) 90.7(2)
C(50)-C(51) 1.495(6) C(1)-N(1)-C(5) 118.2(3)
C(52)-C(53) 1.326(5) C(1)-N(1)-Zn(1) 128.1(3)
C(53)-C(54) 1.437(6) C(5)-N(1)-Zn(1) 113.6(2)
C(54)-C(55) 1.311(6) C(10)-N(2)-C(6) 117.5(3)
C(55)-C(56) 1.499(6) C(10)-N(2)-Zn(1) 128.5(3)
C(57)-C(62) 1.338(7) C(6)-N(2)-Zn(1) 113.7(2)
C(57)-C(58) 1.381(7) C(35)-N(3)-C(39) 117.5(3)
C(58)-C(59) 1.398(8) C(35)-N(3)-Zn(2) 128.1(3)
C(59)-C(60) 1.440(14) C(39)-N(3)-Zn(2) 114.3(3)
C(60)-C(61) 1.25(3) C(44)-N(4)-C(40) 118.0(3)
C(61)-C(62) 1.458(18) C(44)-N(4)-Zn(2) 128.1(3)
C(63)-C(68) 1.367(7) C(40)-N(4)-Zn(2) 113.7(3)
C(63)-C(64) 1.381(6) N(1)-C(1)-C(2) 122.6(4)
C(64)-C(65) 1.394(9) C(3)-C(2)-C(1) 119.0(4)
C(65)-C(66) 1.334(12) C(2)-C(3)-C(4) 120.6(3)
C(66)-C(67) 1.340(12) C(3)-C(4)-C(5) 115.7(4)
C(67)-C(68) 1.392(7) C(3)-C(4)-C(11) 124.0(3)
C(57)-S(5)-Zn(2) 96.98(17)
C(63)-S(6)-Zn(2) 105.78(19)
C(47)-S(7)-C(50) 91.0(3)
C(55)-S(8)-C(52) 90.7(2)
C(1)-N(1)-C(5) 118.2(3)
C(1)-N(1)-Zn(1) 128.1(3)
C(5)-N(1)-Zn(1) 113.6(2)
C(10)-N(2)-C(6) 117.5(3)
C(10)-N(2)-Zn(1) 128.5(3)
C(6)-N(2)-Zn(1) 113.7(2)
C(35)-N(3)-C(39) 117.5(3)
C(35)-N(3)-Zn(2) 128.1(3)
C(39)-N(3)-Zn(2) 114.3(3)
C(44)-N(4)-C(40) 118.0(3)
C(44)-N(4)-Zn(2) 128.1(3)
C(40)-N(4)-Zn(2) 113.7(3)
N(1)-C(1)-C(2) 122.6(4)
C(3)-C(2)-C(1) 119.0(4)
C(2)-C(3)-C(4) 120.6(3)
C(3)-C(4)-C(5) 115.7(4)
C(3)-C(4)-C(11) 124.0(3)
C(5)-C(4)-C(11) 120.3(3)
N(1)-Zn(1)-N(2) 78.49(12)
N(1)-Zn(1)-S(1) 111.64(9)
N(2)-Zn(1)-S(1) 113.13(9)
N(1)-Zn(1)-S(2) 109.85(9)
N(2)-Zn(1)-S(2) 106.65(9)
S(1)-Zn(1)-S(2) 126.69(5)
N(4)-Zn(2)-N(3) 78.42(13)
N(4)-Zn(2)-S(6) 117.62(10)
N(3)-Zn(2)-S(6) 110.52(9)
N(4)-Zn(2)-S(5) 105.86(10)
N(3)-Zn(2)-S(5) 111.08(10)
S(6)-Zn(2)-S(5) 124.17(5)
C(23)-S(1)-Zn(1) 107.85(17)
C(13)-S(3)-C(16) 92.2(2)
C(18)-S(4)-C(21) 92.4(3)
C(57)-S(5)-Zn(2) 96.98(17)
C(63)-S(6)-Zn(2) 105.78(19)
C(47)-S(7)-C(50) 91.0(3)
C(55)-S(8)-C(52) 90.7(2)
C(1)-N(1)-C(5) 118.2(3)
C(1)-N(1)-Zn(1) 128.1(3)
C(5)-N(1)-Zn(1) 113.6(2)
C(10)-N(2)-Zn(1) 128.5(3)
C(6)-N(2)-Zn(1) 113.7(2)
C(35)-N(3)-C(39) 117.5(3)
C(35)-N(3)-Zn(2) 128.1(3)
C(39)-N(3)-Zn(2) 114.3(3)
C(44)-N(4)-C(40) 118.0(3)
C(44)-N(4)-Zn(2) 128.1(3)
C(40)-N(4)-Zn(2) 113.7(3)
N(1)-C(1)-C(2) 122.6(4)
C(3)-C(2)-C(1) 119.0(4)
C(2)-C(3)-C(4) 120.6(3)
C(3)-C(4)-C(5) 115.7(4)
C(3)-C(4)-C(11) 124.0(3)
C(5)-C(4)-C(11) 120.3(3)
N(1)-C(1)-C(2) 122.6(4)
C(3)-C(2)-C(1) 119.0(4)
C(2)-C(3)-C(4) 120.6(3)
C(3)-C(4)-C(5) 115.7(4)
C(3)-C(4)-C(11) 124.0(3)
C(5)-C(4)-C(11) 120.3(3)
N(1)-C(1)-C(2) 122.6(4)
C(3)-C(2)-C(1) 119.0(4)
C(2)-C(3)-C(4) 120.6(3)
C(3)-C(4)-C(5) 115.7(4)
C(3)-C(4)-C(11) 124.0(3)
C(5)-C(4)-C(11) 120.3(3)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
<th>Bond</th>
<th>Angle (°)</th>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(12)-C(11)-C(15)</td>
<td>119.6(3)</td>
<td>C(35)-C(36)-C(37)</td>
<td>120.6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)-C(11)-C(15)</td>
<td>119.9(3)</td>
<td>C(36)-C(37)-C(38)</td>
<td>118.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)-C(7)</td>
<td>119.6(4)</td>
<td>C(39)-C(38)-C(37)</td>
<td>116.8(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)-C(20)</td>
<td>122.5(3)</td>
<td>C(39)-C(38)-C(45)</td>
<td>120.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(7)-C(12)-C(20)</td>
<td>117.9(3)</td>
<td>C(37)-C(38)-C(45)</td>
<td>122.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(13)-S(3)</td>
<td>112.1(4)</td>
<td>N(3)-C(39)-C(38)</td>
<td>124.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>111.9(4)</td>
<td>N(3)-C(39)-C(40)</td>
<td>116.2(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-C(15)-C(14)</td>
<td>113.1(4)</td>
<td>C(38)-C(39)-C(40)</td>
<td>119.5(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)-C(15)-C(11)</td>
<td>123.7(4)</td>
<td>N(4)-C(40)-C(41)</td>
<td>124.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)-C(11)</td>
<td>123.2(4)</td>
<td>N(4)-C(40)-C(39)</td>
<td>117.1(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)-C(17)</td>
<td>129.4(4)</td>
<td>C(41)-C(40)-C(39)</td>
<td>118.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)-S(3)</td>
<td>110.7(4)</td>
<td>C(42)-C(41)-C(40)</td>
<td>115.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17)-C(16)-S(3)</td>
<td>119.8(3)</td>
<td>C(42)-C(41)-C(46)</td>
<td>123.6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(18)-S(4)</td>
<td>114.0(5)</td>
<td>C(40)-C(41)-C(46)</td>
<td>121.3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)-C(20)</td>
<td>109.3(6)</td>
<td>C(43)-C(42)-C(41)</td>
<td>120.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(20)-C(19)</td>
<td>114.2(5)</td>
<td>C(42)-C(43)-C(44)</td>
<td>119.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)-C(20)-C(12)</td>
<td>124.4(5)</td>
<td>N(4)-C(44)-C(43)</td>
<td>121.9(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)-C(12)</td>
<td>121.4(5)</td>
<td>C(46)-C(45)-C(38)</td>
<td>119.8(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)-C(22)</td>
<td>130.3(6)</td>
<td>C(46)-C(45)-C(49)</td>
<td>121.2(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)-C(21)-S(4)</td>
<td>110.0(5)</td>
<td>C(38)-C(45)-C(49)</td>
<td>119.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)-C(21)-S(4)</td>
<td>119.7(5)</td>
<td>C(45)-C(46)-C(41)</td>
<td>120.0(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(23)-C(28)</td>
<td>118.1(4)</td>
<td>C(45)-C(46)-C(54)</td>
<td>121.6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)-C(23)-S(1)</td>
<td>124.8(4)</td>
<td>C(41)-C(46)-C(54)</td>
<td>118.4(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28)-C(23)-S(1)</td>
<td>117.0(4)</td>
<td>C(48)-C(47)-S(7)</td>
<td>112.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)-C(25)</td>
<td>121.1(5)</td>
<td>C(47)-C(48)-C(49)</td>
<td>111.6(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)-C(25)-C(24)</td>
<td>119.4(6)</td>
<td>C(50)-C(49)-C(48)</td>
<td>112.2(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)-C(26)-C(25)</td>
<td>119.5(6)</td>
<td>C(50)-C(49)-C(45)</td>
<td>124.0(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(28)-C(27)-C(26)</td>
<td>120.4(5)</td>
<td>C(48)-C(49)-C(45)</td>
<td>123.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)-C(28)-C(23)</td>
<td>121.5(5)</td>
<td>C(49)-C(50)-C(51)</td>
<td>129.2(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(34)-C(29)-C(30)</td>
<td>117.7(4)</td>
<td>C(49)-C(50)-S(7)</td>
<td>112.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(34)-C(29)-S(2)</td>
<td>122.5(4)</td>
<td>C(51)-C(50)-S(7)</td>
<td>118.3(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30)-C(29)-S(2)</td>
<td>119.8(4)</td>
<td>C(53)-C(52)-S(8)</td>
<td>111.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31)-C(30)-C(29)</td>
<td>120.5(5)</td>
<td>C(52)-C(53)-C(54)</td>
<td>112.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(32)-C(31)-C(30)</td>
<td>122.6(7)</td>
<td>C(55)-C(54)-C(53)</td>
<td>113.1(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(31)-C(32)-C(33)</td>
<td>119.5(7)</td>
<td>C(55)-C(54)-C(46)</td>
<td>123.4(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(32)-C(33)-C(34)</td>
<td>119.1(7)</td>
<td>C(53)-C(54)-C(46)</td>
<td>123.4(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)-C(34)-C(33)</td>
<td>120.6(5)</td>
<td>C(54)-C(55)-C(56)</td>
<td>129.0(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(3)-C(35)-C(36)</td>
<td>122.4(4)</td>
<td>C(54)-C(55)-S(8)</td>
<td>112.3(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bond</td>
<td>angle (°)</td>
<td>bond</td>
<td>angle (°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(56)-C(55)-S(8)</td>
<td>118.6(4)</td>
<td>C(68)-C(63)-C(64)</td>
<td>117.5(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(62)-C(57)-C(58)</td>
<td>117.6(7)</td>
<td>C(68)-C(63)-S(6)</td>
<td>123.7(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(62)-C(57)-S(5)</td>
<td>124.1(7)</td>
<td>C(64)-C(63)-S(6)</td>
<td>118.6(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(58)-C(57)-S(5)</td>
<td>118.2(5)</td>
<td>C(63)-C(64)-C(65)</td>
<td>120.0(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(57)-C(58)-C(59)</td>
<td>123.3(7)</td>
<td>C(66)-C(65)-C(64)</td>
<td>121.5(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(58)-C(59)-C(60)</td>
<td>108.9(9)</td>
<td>C(65)-C(66)-C(67)</td>
<td>119.1(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(61)-C(60)-C(59)</td>
<td>135.5(17)</td>
<td>C(66)-C(67)-C(68)</td>
<td>121.2(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(60)-C(61)-C(62)</td>
<td>108.1(14)</td>
<td>C(63)-C(68)-C(67)</td>
<td>120.6(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(57)-C(62)-C(61)</td>
<td>125.7(11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:
Table S9 Anisotropic displacement parameters (Å²×10³) for complex 6. The anisotropic displacement factor exponent takes the form: -2π²[h²a*²U₁₁ + ... + 2hka*b*U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₂</th>
<th>U₂₃</th>
<th>U₃₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)</td>
<td>57(1)</td>
<td>60(1)</td>
<td>66(1)</td>
<td>4(1)</td>
<td>-13(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>Zn(2)</td>
<td>51(1)</td>
<td>73(1)</td>
<td>73(1)</td>
<td>1(1)</td>
<td>-10(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>84(1)</td>
<td>61(1)</td>
<td>107(1)</td>
<td>0(1)</td>
<td>-35(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>68(1)</td>
<td>65(1)</td>
<td>77(1)</td>
<td>0(1)</td>
<td>-19(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>S(3)</td>
<td>93(1)</td>
<td>119(1)</td>
<td>51(1)</td>
<td>11(1)</td>
<td>-16(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>S(4)</td>
<td>54(1)</td>
<td>263(2)</td>
<td>103(1)</td>
<td>10(1)</td>
<td>7(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>S(5)</td>
<td>85(1)</td>
<td>75(1)</td>
<td>208(2)</td>
<td>7(1)</td>
<td>-40(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>S(6)</td>
<td>58(1)</td>
<td>85(1)</td>
<td>71(1)</td>
<td>-2(1)</td>
<td>-7(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>S(7)</td>
<td>45(1)</td>
<td>116(1)</td>
<td>91(1)</td>
<td>-12(1)</td>
<td>2(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>S(8)</td>
<td>82(1)</td>
<td>144(1)</td>
<td>70(1)</td>
<td>-16(1)</td>
<td>-22(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>47(3)</td>
<td>51(2)</td>
<td>57(2)</td>
<td>2(2)</td>
<td>6(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>N(2)</td>
<td>59(2)</td>
<td>53(2)</td>
<td>47(2)</td>
<td>2(2)</td>
<td>-4(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>N(3)</td>
<td>49(2)</td>
<td>62(2)</td>
<td>55(2)</td>
<td>-2(2)</td>
<td>-7(2)</td>
<td>3(2)</td>
</tr>
<tr>
<td>N(4)</td>
<td>42(2)</td>
<td>80(3)</td>
<td>62(2)</td>
<td>-2(2)</td>
<td>2(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>43(3)</td>
<td>60(3)</td>
<td>77(3)</td>
<td>3(2)</td>
<td>9(3)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>60(3)</td>
<td>70(3)</td>
<td>59(3)</td>
<td>-2(2)</td>
<td>16(2)</td>
<td>7(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>63(3)</td>
<td>63(3)</td>
<td>44(2)</td>
<td>-3(2)</td>
<td>6(2)</td>
<td>0(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>50(3)</td>
<td>49(3)</td>
<td>45(2)</td>
<td>-3(2)</td>
<td>4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>44(3)</td>
<td>40(3)</td>
<td>48(2)</td>
<td>3(2)</td>
<td>4(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>53(3)</td>
<td>45(3)</td>
<td>43(2)</td>
<td>1(2)</td>
<td>-2(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>52(3)</td>
<td>56(3)</td>
<td>43(2)</td>
<td>-3(2)</td>
<td>4(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>66(3)</td>
<td>83(4)</td>
<td>55(3)</td>
<td>-3(2)</td>
<td>9(2)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(9)</td>
<td>83(4)</td>
<td>94(4)</td>
<td>42(3)</td>
<td>-6(2)</td>
<td>8(3)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>80(4)</td>
<td>84(4)</td>
<td>42(3)</td>
<td>0(2)</td>
<td>-5(2)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>C(11)</td>
<td>48(3)</td>
<td>58(3)</td>
<td>41(2)</td>
<td>1(2)</td>
<td>3(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>47(3)</td>
<td>61(3)</td>
<td>46(2)</td>
<td>-1(2)</td>
<td>1(2)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>85(4)</td>
<td>124(5)</td>
<td>70(3)</td>
<td>-4(3)</td>
<td>2(3)</td>
<td>-29(3)</td>
</tr>
<tr>
<td>C(14)</td>
<td>59(3)</td>
<td>85(4)</td>
<td>53(3)</td>
<td>-5(2)</td>
<td>-8(2)</td>
<td>-8(3)</td>
</tr>
<tr>
<td>C(15)</td>
<td>54(3)</td>
<td>67(3)</td>
<td>45(2)</td>
<td>-3(2)</td>
<td>5(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>77(4)</td>
<td>83(4)</td>
<td>53(3)</td>
<td>5(2)</td>
<td>1(2)</td>
<td>5(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>137(5)</td>
<td>71(4)</td>
<td>78(3)</td>
<td>19(3)</td>
<td>-5(3)</td>
<td>-12(4)</td>
</tr>
<tr>
<td>C(18)</td>
<td>91(6)</td>
<td>291(11)</td>
<td>99(4)</td>
<td>27(5)</td>
<td>-3(4)</td>
<td>-64(6)</td>
</tr>
<tr>
<td>C(19)</td>
<td>51(4)</td>
<td>156(6)</td>
<td>84(3)</td>
<td>16(3)</td>
<td>11(3)</td>
<td>-28(4)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>C(20)</td>
<td>61(4)</td>
<td>109(4)</td>
<td>52(3)</td>
<td>-8(3)</td>
<td>-2(2)</td>
<td>17(3)</td>
</tr>
<tr>
<td>C(21)</td>
<td>84(4)</td>
<td>162(6)</td>
<td>55(3)</td>
<td>-8(3)</td>
<td>3(3)</td>
<td>37(4)</td>
</tr>
<tr>
<td>C(22)</td>
<td>159(6)</td>
<td>102(5)</td>
<td>105(4)</td>
<td>8(4)</td>
<td>-4(4)</td>
<td>53(4)</td>
</tr>
<tr>
<td>C(23)</td>
<td>47(3)</td>
<td>68(3)</td>
<td>80(3)</td>
<td>19(3)</td>
<td>-6(2)</td>
<td>-9(3)</td>
</tr>
<tr>
<td>C(24)</td>
<td>97(4)</td>
<td>77(4)</td>
<td>84(3)</td>
<td>14(3)</td>
<td>-14(3)</td>
<td>7(3)</td>
</tr>
<tr>
<td>C(25)</td>
<td>157(6)</td>
<td>111(5)</td>
<td>90(4)</td>
<td>-6(3)</td>
<td>-24(4)</td>
<td>12(4)</td>
</tr>
<tr>
<td>C(26)</td>
<td>142(6)</td>
<td>155(7)</td>
<td>83(4)</td>
<td>26(4)</td>
<td>-31(4)</td>
<td>28(5)</td>
</tr>
<tr>
<td>C(27)</td>
<td>95(5)</td>
<td>133(6)</td>
<td>100(4)</td>
<td>27(4)</td>
<td>-12(4)</td>
<td>28(4)</td>
</tr>
<tr>
<td>C(28)</td>
<td>71(4)</td>
<td>98(4)</td>
<td>87(3)</td>
<td>17(3)</td>
<td>-8(3)</td>
<td>18(3)</td>
</tr>
<tr>
<td>C(29)</td>
<td>57(3)</td>
<td>43(3)</td>
<td>68(3)</td>
<td>-8(2)</td>
<td>1(2)</td>
<td>-4(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>99(4)</td>
<td>62(3)</td>
<td>77(3)</td>
<td>6(2)</td>
<td>7(3)</td>
<td>7(3)</td>
</tr>
<tr>
<td>C(31)</td>
<td>193(8)</td>
<td>72(4)</td>
<td>92(4)</td>
<td>7(3)</td>
<td>-50(5)</td>
<td>36(5)</td>
</tr>
<tr>
<td>C(32)</td>
<td>137(8)</td>
<td>55(4)</td>
<td>214(8)</td>
<td>-20(5)</td>
<td>-108(8)</td>
<td>32(5)</td>
</tr>
<tr>
<td>C(33)</td>
<td>62(4)</td>
<td>56(4)</td>
<td>243(8)</td>
<td>-21(5)</td>
<td>-19(6)</td>
<td>10(3)</td>
</tr>
<tr>
<td>C(34)</td>
<td>73(4)</td>
<td>54(3)</td>
<td>125(4)</td>
<td>-13(3)</td>
<td>15(4)</td>
<td>5(3)</td>
</tr>
<tr>
<td>C(35)</td>
<td>66(4)</td>
<td>79(4)</td>
<td>50(3)</td>
<td>1(2)</td>
<td>-5(2)</td>
<td>2(3)</td>
</tr>
<tr>
<td>C(36)</td>
<td>66(4)</td>
<td>94(4)</td>
<td>49(3)</td>
<td>-5(2)</td>
<td>5(2)</td>
<td>-1(3)</td>
</tr>
<tr>
<td>C(37)</td>
<td>53(3)</td>
<td>86(3)</td>
<td>54(3)</td>
<td>-4(2)</td>
<td>3(2)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(38)</td>
<td>45(3)</td>
<td>66(3)</td>
<td>45(2)</td>
<td>-4(2)</td>
<td>0(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(39)</td>
<td>45(3)</td>
<td>56(3)</td>
<td>51(3)</td>
<td>-5(2)</td>
<td>-1(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(40)</td>
<td>46(3)</td>
<td>60(3)</td>
<td>55(3)</td>
<td>1(2)</td>
<td>4(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(41)</td>
<td>45(3)</td>
<td>77(3)</td>
<td>54(3)</td>
<td>-2(2)</td>
<td>6(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(42)</td>
<td>48(3)</td>
<td>134(5)</td>
<td>63(3)</td>
<td>2(3)</td>
<td>8(2)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(43)</td>
<td>63(4)</td>
<td>167(6)</td>
<td>61(3)</td>
<td>-6(3)</td>
<td>14(3)</td>
<td>4(4)</td>
</tr>
<tr>
<td>C(44)</td>
<td>39(3)</td>
<td>122(4)</td>
<td>81(3)</td>
<td>1(3)</td>
<td>16(3)</td>
<td>8(3)</td>
</tr>
<tr>
<td>C(45)</td>
<td>38(3)</td>
<td>78(3)</td>
<td>52(3)</td>
<td>-3(2)</td>
<td>-1(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(46)</td>
<td>45(3)</td>
<td>83(3)</td>
<td>49(3)</td>
<td>-2(2)</td>
<td>-2(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(47)</td>
<td>72(4)</td>
<td>114(5)</td>
<td>98(4)</td>
<td>9(3)</td>
<td>1(3)</td>
<td>15(4)</td>
</tr>
<tr>
<td>C(48)</td>
<td>52(3)</td>
<td>87(4)</td>
<td>87(3)</td>
<td>8(3)</td>
<td>8(3)</td>
<td>9(3)</td>
</tr>
<tr>
<td>C(49)</td>
<td>61(4)</td>
<td>83(4)</td>
<td>51(2)</td>
<td>-5(2)</td>
<td>-5(2)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(50)</td>
<td>68(4)</td>
<td>89(4)</td>
<td>69(3)</td>
<td>-9(3)</td>
<td>-9(2)</td>
<td>-12(3)</td>
</tr>
<tr>
<td>C(51)</td>
<td>109(5)</td>
<td>74(4)</td>
<td>127(4)</td>
<td>15(3)</td>
<td>-11(3)</td>
<td>-17(3)</td>
</tr>
<tr>
<td>C(52)</td>
<td>89(4)</td>
<td>123(5)</td>
<td>76(3)</td>
<td>19(3)</td>
<td>-14(3)</td>
<td>-3(3)</td>
</tr>
<tr>
<td>C(53)</td>
<td>86(4)</td>
<td>84(4)</td>
<td>67(3)</td>
<td>10(3)</td>
<td>-21(3)</td>
<td>-12(3)</td>
</tr>
<tr>
<td>C(54)</td>
<td>50(3)</td>
<td>88(4)</td>
<td>62(3)</td>
<td>-5(3)</td>
<td>5(2)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>C(55)</td>
<td>66(4)</td>
<td>106(5)</td>
<td>77(3)</td>
<td>-17(3)</td>
<td>-8(2)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>C(56)</td>
<td>152(6)</td>
<td>72(4)</td>
<td>164(5)</td>
<td>-23(4)</td>
<td>-39(4)</td>
<td>28(4)</td>
</tr>
</tbody>
</table>

S18
<table>
<thead>
<tr>
<th></th>
<th>C(57)</th>
<th>C(58)</th>
<th>C(59)</th>
<th>C(60)</th>
<th>C(61)</th>
<th>C(62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>111(5)</td>
<td>127(6)</td>
<td>103(6)</td>
<td>320(20)</td>
<td>430(30)</td>
<td>332(14)</td>
</tr>
<tr>
<td>2</td>
<td>54(3)</td>
<td>70(4)</td>
<td>84(5)</td>
<td>79(6)</td>
<td>72(7)</td>
<td>61(5)</td>
</tr>
<tr>
<td>3</td>
<td>96(4)</td>
<td>165(6)</td>
<td>293(12)</td>
<td>312(19)</td>
<td>273(18)</td>
<td>114(6)</td>
</tr>
<tr>
<td>4</td>
<td>-3(3)</td>
<td>2(4)</td>
<td>-5(6)</td>
<td>-97(11)</td>
<td>-58(10)</td>
<td>-15(4)</td>
</tr>
<tr>
<td>5</td>
<td>8(4)</td>
<td>5(6)</td>
<td>36(7)</td>
<td>-244(17)</td>
<td>-154(16)</td>
<td>-27(6)</td>
</tr>
<tr>
<td>6</td>
<td>14(3)</td>
<td>-3(4)</td>
<td>-16(5)</td>
<td>68(11)</td>
<td>23(11)</td>
<td>3(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C(63)</td>
<td>C(64)</td>
<td>C(65)</td>
<td>C(66)</td>
<td>C(67)</td>
<td>C(68)</td>
</tr>
<tr>
<td>1</td>
<td>54(3)</td>
<td>63(4)</td>
<td>79(5)</td>
<td>190(12)</td>
<td>191(9)</td>
<td>116(5)</td>
</tr>
<tr>
<td>2</td>
<td>111(4)</td>
<td>177(6)</td>
<td>282(13)</td>
<td>255(14)</td>
<td>162(7)</td>
<td>120(5)</td>
</tr>
<tr>
<td>3</td>
<td>68(3)</td>
<td>109(4)</td>
<td>136(7)</td>
<td>97(7)</td>
<td>95(5)</td>
<td>79(4)</td>
</tr>
<tr>
<td>4</td>
<td>-24(3)</td>
<td>-41(4)</td>
<td>-90(7)</td>
<td>-52(6)</td>
<td>5(4)</td>
<td>9(3)</td>
</tr>
<tr>
<td>5</td>
<td>-10(2)</td>
<td>-17(3)</td>
<td>-59(5)</td>
<td>-49(6)</td>
<td>-43(5)</td>
<td>-24(3)</td>
</tr>
<tr>
<td>6</td>
<td>23(3)</td>
<td>8(4)</td>
<td>58(7)</td>
<td>150(11)</td>
<td>73(6)</td>
<td>26(4)</td>
</tr>
</tbody>
</table>

S19
Table S10 Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\AA^2 \times 10^3$) for complex 6.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>3862</td>
<td>1679</td>
<td>3340</td>
<td>72</td>
</tr>
<tr>
<td>H(2)</td>
<td>4322</td>
<td>1910</td>
<td>4513</td>
<td>75</td>
</tr>
<tr>
<td>H(3)</td>
<td>5235</td>
<td>1834</td>
<td>4543</td>
<td>68</td>
</tr>
<tr>
<td>H(8)</td>
<td>6414</td>
<td>1243</td>
<td>1131</td>
<td>81</td>
</tr>
<tr>
<td>H(9)</td>
<td>5862</td>
<td>1157</td>
<td>34</td>
<td>88</td>
</tr>
<tr>
<td>H(10)</td>
<td>4961</td>
<td>1185</td>
<td>170</td>
<td>82</td>
</tr>
<tr>
<td>H(13)</td>
<td>7141</td>
<td>2591</td>
<td>5110</td>
<td>111</td>
</tr>
<tr>
<td>H(14)</td>
<td>6640</td>
<td>2831</td>
<td>3919</td>
<td>79</td>
</tr>
<tr>
<td>H(17A)</td>
<td>5621</td>
<td>159</td>
<td>5057</td>
<td>143</td>
</tr>
<tr>
<td>H(17B)</td>
<td>6137</td>
<td>-422</td>
<td>4917</td>
<td>143</td>
</tr>
<tr>
<td>H(17C)</td>
<td>5780</td>
<td>-103</td>
<td>4201</td>
<td>143</td>
</tr>
<tr>
<td>H(18)</td>
<td>7796</td>
<td>2370</td>
<td>2027</td>
<td>193</td>
</tr>
<tr>
<td>H(19)</td>
<td>6865</td>
<td>2725</td>
<td>2061</td>
<td>116</td>
</tr>
<tr>
<td>H(22A)</td>
<td>6936</td>
<td>-113</td>
<td>3743</td>
<td>183</td>
</tr>
<tr>
<td>H(22B)</td>
<td>7130</td>
<td>-650</td>
<td>3003</td>
<td>183</td>
</tr>
<tr>
<td>H(22C)</td>
<td>6537</td>
<td>-329</td>
<td>3048</td>
<td>183</td>
</tr>
<tr>
<td>H(24)</td>
<td>3785</td>
<td>951</td>
<td>-5</td>
<td>103</td>
</tr>
<tr>
<td>H(25)</td>
<td>3442</td>
<td>682</td>
<td>-1260</td>
<td>144</td>
</tr>
<tr>
<td>H(26)</td>
<td>2874</td>
<td>1752</td>
<td>-1835</td>
<td>153</td>
</tr>
<tr>
<td>H(27)</td>
<td>2623</td>
<td>3035</td>
<td>-1136</td>
<td>132</td>
</tr>
<tr>
<td>H(28)</td>
<td>2962</td>
<td>3288</td>
<td>94</td>
<td>103</td>
</tr>
<tr>
<td>H(30)</td>
<td>3941</td>
<td>-835</td>
<td>3078</td>
<td>95</td>
</tr>
<tr>
<td>H(31)</td>
<td>4577</td>
<td>-1368</td>
<td>3921</td>
<td>144</td>
</tr>
<tr>
<td>H(32)</td>
<td>5426</td>
<td>-1536</td>
<td>3568</td>
<td>164</td>
</tr>
<tr>
<td>H(33)</td>
<td>5658</td>
<td>-1256</td>
<td>2276</td>
<td>144</td>
</tr>
<tr>
<td>H(34)</td>
<td>5007</td>
<td>-757</td>
<td>1375</td>
<td>101</td>
</tr>
<tr>
<td>H(35)</td>
<td>-32</td>
<td>943</td>
<td>287</td>
<td>78</td>
</tr>
<tr>
<td>H(36)</td>
<td>850</td>
<td>645</td>
<td>120</td>
<td>84</td>
</tr>
<tr>
<td>H(37)</td>
<td>1425</td>
<td>525</td>
<td>1193</td>
<td>77</td>
</tr>
<tr>
<td>H(42)</td>
<td>330</td>
<td>873</td>
<td>4690</td>
<td>98</td>
</tr>
<tr>
<td>H(43)</td>
<td>-570</td>
<td>1084</td>
<td>4711</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>-1062</td>
<td>1129</td>
<td>3551</td>
<td>97</td>
</tr>
<tr>
<td>H(47)</td>
<td>2838</td>
<td>-604</td>
<td>2820</td>
<td>113</td>
</tr>
<tr>
<td>H(48)</td>
<td>1914</td>
<td>-766</td>
<td>3051</td>
<td>90</td>
</tr>
<tr>
<td>H(51A)</td>
<td>1651</td>
<td>2175</td>
<td>1735</td>
<td>156</td>
</tr>
<tr>
<td>H(51B)</td>
<td>2249</td>
<td>2467</td>
<td>1817</td>
<td>156</td>
</tr>
<tr>
<td>H(51C)</td>
<td>1871</td>
<td>2586</td>
<td>2529</td>
<td>156</td>
</tr>
<tr>
<td>H(52)</td>
<td>1903</td>
<td>-622</td>
<td>5450</td>
<td>115</td>
</tr>
<tr>
<td>H(53)</td>
<td>1374</td>
<td>-798</td>
<td>4293</td>
<td>95</td>
</tr>
<tr>
<td>H(56A)</td>
<td>1416</td>
<td>2488</td>
<td>3916</td>
<td>195</td>
</tr>
<tr>
<td>H(56B)</td>
<td>1631</td>
<td>2713</td>
<td>4764</td>
<td>195</td>
</tr>
<tr>
<td>H(56C)</td>
<td>1022</td>
<td>2542</td>
<td>4614</td>
<td>195</td>
</tr>
<tr>
<td>H(58)</td>
<td>-63</td>
<td>3125</td>
<td>955</td>
<td>145</td>
</tr>
<tr>
<td>H(59)</td>
<td>797</td>
<td>3612</td>
<td>1392</td>
<td>191</td>
</tr>
<tr>
<td>H(60)</td>
<td>872</td>
<td>3713</td>
<td>2760</td>
<td>290</td>
</tr>
<tr>
<td>H(61)</td>
<td>250</td>
<td>3842</td>
<td>3605</td>
<td>315</td>
</tr>
<tr>
<td>H(62)</td>
<td>-593</td>
<td>3243</td>
<td>3097</td>
<td>203</td>
</tr>
<tr>
<td>H(64)</td>
<td>-2302</td>
<td>-386</td>
<td>492</td>
<td>140</td>
</tr>
<tr>
<td>H(65)</td>
<td>-2770</td>
<td>161</td>
<td>-594</td>
<td>200</td>
</tr>
<tr>
<td>H(66)</td>
<td>-2452</td>
<td>1334</td>
<td>-1323</td>
<td>218</td>
</tr>
<tr>
<td>H(67)</td>
<td>-1693</td>
<td>2060</td>
<td>-931</td>
<td>180</td>
</tr>
<tr>
<td>H(68)</td>
<td>-1210</td>
<td>1552</td>
<td>153</td>
<td>127</td>
</tr>
</tbody>
</table>