SUPPORTING INFORMATION

Diene-Transmissive Cycloadditions: Control of Monocycloaddition by Self-Assembly on a Lewis Acid Template

Michael Santos Souweha, Akram Arab, Megan ApSimon, and Alex G. Fallis*

Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.
E-mail: afallis@science.uottawa.ca

Table of Contents

Experimental procedures.. S2-S13
1b S4 2 S4 3 S4
4 S5 5 S6 6a S6
6b S7 7 S8 8 S9
9 S10 10 S11 11 S11
12a S12 12b S12

1H NMR Spectra... S17-S36
3 S14 4 S16 5 S18
6a S20 6b S22 7 S24
8 S26 9 S28 10 S30
11 S32 12a S34 12b S36

13C NMR Spectra... S18-S37
3 S15 4 S17 5 S19
6a S21 6b S23 7 S25
8 S27 9 S29 10 S31
11 S33 12a S35 12b S37

HPLC Chromatogram of 7 .. S38
Experimental Procedures

General Methods. All non-aqueous reactions were performed under argon in flame-dried glassware using dry solvents. Tetrahydrofuran was distilled from sodium/benzophenone. Benzene and triethylamine were distilled from calcium hydride. n-Butyllithium solutions in hexanes from Aldrich Chemical Company were titrated prior to use against diphenylacetic acid and used directly. Starting materials were purchased from Aldrich Chemical Company and used without further purification unless otherwise stated. Low temperature baths were ice/water (0 °C) and CO$_2$(C)/acetone (-78 °C). Reaction temperatures refer to that of the bath.

Reactions were monitored by thin layer chromatography (TLC) using commercial aluminum-backed silica gel sheets coated with silica gel 60 F$_{254}$ (E. Merck). TLC spots were developed by heating the plate after treatment with a phosphomolybdic acid (5%) containing a trace of ceric sulfate in aqueous sulfuric acid (5% v/v) or a solution of KMnO$_4$ in aqueous potassium hydroxide. Room temperature corresponds to 23 °C. Anhydrous magnesium sulfate (MgSO$_4$) and sodium sulphate (Na$_2$SO$_4$) was used to dry solutions in organic solvents. Excess solvents were removed (concentrated) in vacuo at pressures obtained by a water or air aspirator connected to a Büchi rotary evaporator. Trace solvents were removed on a vacuum pump. Product purification by flash chromatography was performed with E. Merck Silica Gel 60 (230-400 mesh) according to Still et al.1 Preparative TLC (PTLC) was carried out on glass plates (20 x 20 cm) precoated (0.25 mm) with silica gel 60 F$_{254}$. Materials were detected by visualization under an ultraviolet lamp (254 nm) and/or by treating a 1 cm vertical strip removed from the plate with a solution of phosphomolybdic acid (5%) containing a trace of ceric sulfate in aqueous sulfuric acid (5% v/v), followed by charring on a hot plate.

Spectral Data. Melting points were determined with a Thomas-Hoover Unit melting point apparatus and are uncorrected. 1H NMR (500, 400 or 300 MHz) and 13C NMR (125, 100 or 75 MHz) spectra were recorded on a Bruker AVANCE 500, 400 or a 300 spectrometer. Chemical shifts are reported downfield from tetramethylsilane (δ scale) in ppm. 1H NMR data are reported as follows: Chemical shift (multiplicity, coupling constants (Hz), and integration).

Low resolution mass spectroscopy (MS) using electron impact (EI), were recorded on a V.G. Micromass 7070 HS mass spectrometer with an electron beam energy of 70 eV. High resolution mass spectroscopy (HRMS) were recorded on a Kratos Concept-11A mass spectrometer with an electron beam energy of 70 eV. IR spectra were recorded on a SHIMADZU FTIR-8400S spectrometer. The purity of all title compounds was judged to be >95% as determined by a combination of 1H NMR and 13C NMR analyses.

Materials: The preparations of the following compounds were described previously: (E)-5-bromopenta-1,3-diene \(^2\), \(1b\)^3, and \(2\). All other reagents were commercially available and unless otherwise noted, were used as received.

\(^3\) Smith, A. B., III; Fox, R. J.; Vanecko, J. A. *Org. Lett.* **2005**, *7*, 3099-3102.
3-(tert-Butyldimethylsilyloxy)propan-1-ol (1b)\(^3\)

\[
\begin{align*}
\text{HO} & \quad \text{OTBS} \\
1b
\end{align*}
\]

\(^1\text{H} \text{ NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 3.76 \ (t, \ J = 5.5 \text{ Hz}, \ 2\text{H}), \ 3.72 \ (t, \ J = 5.5 \text{ Hz}, \ 2\text{H}), \ 2.97 - 2.58 \ (m, \ 1\text{H}), \ 1.71 \ (\text{quintet}, \ J = 5.5 \text{ Hz}, \ 2\text{H}), \ 0.84 \ (s, \ 9\text{H}), \ 0.02 \ (s, \ 6\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (125 \text{ MHz}, \text{CDCl}_3) \ \delta \\
62.5 \ (\text{CH}_2), \ 61.9 \ (\text{CH}_2), \ 34.2 \ (\text{CH}_2), \ 25.8 \ (\text{CH}_3), \ 18.2 \ (\text{C}), \ -5.6 \ (\text{CH}_3); \ \text{MS (EI) m/z 133 (M}^+ - 57) \ (24), \ 105 \ (41), \ 75 \ (100); \ \text{HRMS calculated for C}_{5}\text{H}_{13}\text{O}_{2}\text{Si (M}^+ - 57) \ 133.0685, \ \text{found 133.0691.}
\]

3-(tert-Butyldimethylsilyloxy)propanal (2)\(^3\)

\[
\begin{align*}
\text{H} & \quad \quad \text{OTBS} \\
2
\end{align*}
\]

\(^1\text{H} \text{ NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 9.77 - 9.75 \ (m, \ 1\text{H}), \ 3.96 - 3.94 \ (m, \ 2\text{H}), \ 2.57 - 2.54 \ (m, \ 2\text{H}), \ 0.84 \ (s, \ 9\text{H}), \ 0.02 \ (s, \ 6\text{H}); \ ^{13}\text{C} \ \text{NMR} \ (125 \text{ MHz}, \text{CDCl}_3) \ \delta \\
202.0 \ (\text{CH}), \ 57.3 \ (\text{CH}_2), \ 46.5 \ (\text{CH}_2), \ 25.8 \ (\text{CH}_3), \ 18.2 \ (\text{C}) \ -5.5 \ (\text{CH}_3); \ \text{MS (EI) m/z 131 (M}^+ - 57) \ (71), \ 101 \ (100), \ 75 \ (13), \ 60 \ (62), \ 42 \ (22); \ \text{HRMS calculated for C}_{5}\text{H}_{11}\text{O}_{2}\text{Si (M}^+ - 57) \ 131.0528, \ \text{found 131.0509.}
\]

1-(tert-Butyldimethylsilyloxy)-4-vinylhex-5-en-3-ol (3)

\[
\begin{align*}
\text{TBSO} & \quad \text{OH} \\
3
\end{align*}
\]

3-(tert-Butyldimethylsilyloxy)propanal (2) (0.50 g, 2.65 mmol) was dissolved in a mixture of DMF (3 mL) and H\(_2\)O (1.5 mL). 5-Bromo-1,3-pentadiene (0.78 g, 5.30 mmol) was then added and the solution was cooled to 0 °C. Indium metal (100 mesh, 0.61 g 5.30 mmol) was added portion-wise, and the reaction was warmed to 23 °C and stirred for 30 minutes. The reaction was then diluted with CH\(_2\)Cl\(_2\), poured into ether, filtered (5 cm high silica gel plug) with ether as eluent. After concentration, column chromatography (10:1, petroleum ether:ethyl acetate) provided the title compound as a pale yellow oil (0.47 g, 70%).

\(^1\text{H} \text{ NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 5.87 \ (\text{ddd}, \ J = 17.0, 10.0 \text{ and } 8.0 \text{ Hz}, \ 1\text{H}), \ 5.79 \ (\text{ddd}, \ J = 17.0, \ 10.0 \text{ and } 8.0 \text{ Hz}, \ 1\text{H}), \ 5.13 - 5.05 \ (m, \ 4\text{H}), \ 3.88 - 3.85 \ (m, \ 1\text{H}), \ 3.79 - 3.74 \ (m, \ 2\text{H}), \ 3.27 \ (\text{br s}, \ 1\text{H}), \ 2.78 \ (\text{app. q}, \ J = 6.0 \text{ Hz}, \ 1\text{H}), \ 1.66 - 1.59 \ (m, \ 2\text{H}), \ 0.86 \ (s, \ 9\text{H}), \ 0.04 \ (s, \ 6\text{H}); \ ^{13}\text{C} \ \text{NMR}
(125 MHz, CDCl₃) δ 137.8 (CH), 137.3 (CH), 116.7 (CH₂), 116.4 (CH₂), 73.6 (CH), 62.6 (CH₂), 54.7 (CH), 35.8 (CH₂), 25.8 (CH₃), 18.1 (C), -5.6 (CH₃); **MS** (EI) m/z 189 (M⁺ - 67) (14), 131 (19), 105 (55), 75 (100), 41 (18); **HRMS** calculated for C₉H₂₁O₂Si (M⁺ - 67) 131.1311, found 189.1296.

tert-Butyldimethyl(4-vinylhexa-3,5-dienyloxy)silane (4)

![TBSO\(\text{H}_2\text{C=C=C=C=CH}_2\) \(\text{O} \text{Si(\text{Me})}_2\text{CH}_3\)](image)

1-(tert-Butyldimethylsilyloxy)-4-vinylhex-5-en-3-ol (3) (2.00 g, 7.80 mmol) and NEt₃ (2.17 mL, 15.6 mmol) were combined in CH₂Cl₂ (30 mL) and cooled to 0 ºC. Methanesulfonyl chloride (0.66 mL, 8.58 mmol) was added and the reaction was stirred at 0 ºC for one hour. The reaction was poured into ether, and the organics were washed with saturated NaHCO₃ and brine, dried, filtered and concentrated. The resulting crude oil was dissolved in benzene (30 mL), DBU (1.17 mL, 8.58 mmol) was added and the reaction was heated at reflux overnight. The reaction was extracted with ether, and the organic phase was washed with water and brine. Column chromatography (50:1 petroleum ether:ethyl acetate) afforded the product as a pale yellow oil (1.69 g, 91%).

\(^1\)H NMR (500 MHz, CDCl₃) δ 6.47 (dd, J = 18.5 and 10.5 Hz, 1H), 6.38 (dd, J = 18.0 and 10.5 Hz, 1H), 5.62 (t, J = 7.5 Hz, 1H), 5.28 – 5.24 (m, 3H), 5.02 (dd, J = 11.0 and 1.5 Hz, 1H), 3.64 (t, J = 7.0 Hz, 2H), 2.43 (app. q, J = 7.0 Hz, 2H), 0.88 (s, 9H), 0.04 (s, 6H); **\(^13\)C NMR** (125 MHz, CDCl₃) δ 138.4 (C), 137.8 (CH), 132.0 (CH), 128.5 (CH), 117.4 (CH₂), 114.1 (CH₂), 62.7 (CH₂), 32.0 (CH₂), 25.9 (CH₃), 18.3 (C), -5.3 (CH₃); **MS** (EI) m/z 181 (M⁺ - 57) (65), 105 (25), 89 (67), 75 (100), 73 (99), 59 (16); **HRMS** calculated for C₁₀H₁₇O₂Si (M⁺ - 57) 181.1049, found 181.1055.
4-vinylhexa-3,5-dien-1-ol (5)

TBS protected trienol 4 (1.77g, 7.4 mmol) was dissolved in 200 mL of THF at 0 °C. TBAF (4.29 mL, 14.8 mmol) was added slowly and the reaction was stirred for 2 hours. THF was removed under reduced pressure. The reaction vessel was diluted with CH2Cl2 (100 mL). It was then washed with saturated NaHCO3 and brine, dried with MgSO4, filtered, and concentrated. Column chromatography (4:1, petroleum ether: ethyl acetate) provided the title compound as a pale yellow oil 5 (0.92 g, 67%).

IR νmax 3350, 2927, 1047, 989, 912, 734; 1H NMR (400 MHz, CDCl3) δ 6.50 (1H, dd, J = 11.5, 17.5 Hz), 6.41 (1H, dd, J = 11, 17 Hz), 5.63 (1H, t, J = 8 Hz), 5.35-5.26 (3H, m), 5.07 (1H, dd, J = 1.5, 10.5 Hz), 3.71 (2H, t, J = 6.5 Hz, CH2O), 2.51 (2H, q, J = 6.5 Hz, CH2); 13C NMR (100 MHz, CDCl3) δ 139.9 (C), 137.9 (CH), 132.1 (CH), 127.9 (CH), 118.4 (CH2), 114.9 (CH2), 62.7 (t, CH2O), 32.2 (t, CH2); MS (EI) m/z (relative intensity): 124 ([M]+, 11), 93 (99), 91 (84), 79 (56), 77 (100), 65 (18); HRMS m/z calcd. for C8H12O: 124.0888; found: 124.0905.

5-(2-(tert-Butyldimethylsilyloxy)ethyl)-2,3,4a,8a-tetrachloro-6-vinyl-4a,5,8,8a-tetrahydronaphthalene-1,4-dione (6a)

A solution of tert-butyldimethyl(4-vinylhexa-3,5-dienyloxy)silane (4) (0.10 g, 0.42 mmol) and tetra-chlorobenzoquinone (0.11 g, 0.44 mmol) in toluene (1 mL) was heated at 75 °C for 48 hours. The reaction mixture was diluted with water and the organic layer was extracted with ether, dried, filtered and concentrated. Column chromatography (40:1 petroleum ether:ethyl acetate) afforded the title compound as a bright yellow oil (0.13 g, 66%).
^1H NMR (500 MHz, CDCl₃) δ 6.25 (dd, J = 18.0 and 11.0 Hz, 1H), 5.66 (t, J = 4.0 Hz, 1H), 5.32 (d, J = 18.0 Hz, 1H), 5.06 (d, J = 11.0 Hz, 1H), 3.67 – 3.42 (m, 3H), 3.23 (br s, 1H), 2.84 (dd, J = 19.5 and 3.5 Hz, 1H), 1.84 (br, 1H), 1.30 (br, 1H), 0.85 (s, 9H), 0.00 (s, 3H), -0.02 (s, 3H); ^13C NMR (125 MHz, CDCl₃) δ 182.1 (C), 180.0 (C), 143.8 (C), 143.4 (C), 136.7 (C), 136.4 (CH), 122.2 (CH), 114.3 (CH₂), 78.7 (C), 72.9 (C), 60.3 (CH₂), 44.0 (CH), 35.0 (CH₂), 34.0 (CH₂), 25.9 (CH₃), 18.4 (C), -5.7 (CH₃); MS (El) m/z 427 (M⁺ - 57) (12), 355 (4), 279 (6), 217 (3), 181 (41), 149 (10), 123 (17), 69 (100); HRMS calculated for C₁₆H₁₇Cl₄O₃Si (M⁺ - 57) 424.9701, found 424.9711.

4-(2-(tert-Butyldimethylsilyloxy)ethyl)-3a,7a-dichloro-5-vinyl-3a,4,7,7a-tetrahydroisobenzofuran-1,3-dione (6b)

A solution of tert-butyldimethyl(4-vinylhexa-3,5-dienyloxy)silane (4) (0.10 g, 0.42 mmol) and dichloromaleic anhydride (0.074 g, 0.44 mmol) in toluene (1 mL) was heated to 100 °C for 48 hours. The reaction mixture was diluted with water, extracted with ether, dried, filtered and concentrated. Column chromatography (100:1 petroleum ether:ethyl acetate) afforded the title compound as a yellow oil (0.028 g, 16%).

^1H NMR (500 MHz, CDCl₃) δ 6.41 (dd, J = 10.9 and 17.5 Hz, 1H), 5.83 (dd, J = 6.0 and 3.0 Hz, 1H), 5.43 (d, J = 17.5 Hz, 1H), 5.12 (d, J = 10.9 Hz, 1H), 3.69 (dd, J = 10.4 and 4.3 Hz 3H), 3.56 – 3.42 (m, 3H), 2.95 (dd, J = 20.3 and 6.5 1H), 1.67 – 1.60 (m, 1H), 1.43 – 1.37 (m, 1H), 0.85 (s, 9H), -0.01 (s, 3H), -0.02 (s, 3H); ^13C NMR (125 MHz, CDCl₃) δ 166.5 (C), 166.4 (C), 138.2 (C), 136.4 (CH), 122.5 (CH), 114.6 (CH₂), 73.64 (C), 67.2 (C), 59.3 (CH₂), 41.7 (CH), 34.0 (CH₂), 32.6 (CH₂), 25.8 (CH₃), 18.1 (CH₂), -5.5 (CH₂); MS (El) m/z 347 (M⁺ - 57) (47), 325 (6), 231 (32), 165 (19), 123 (56), 95 (29), 75 (100), 59 (32); HRMS calculated for C₁₄H₁₇Cl₂O₄Si (M⁺ - 57) 347.0273, found 347.0260.
(4aR,8aR)-rel-5-vinyl-3,4,4a,7,8,8a-hexahydro-1H-isochromen-1-one (7)

Large-scale MeMgBr mediated DA of trienol 5 with methyl acrylate (MAC):
MeMgBr (3.0 M in ether; 10.7 mL, 32.1 mmol) and MAC (48 mL, 534 mmol) were added sequentially to a stirred solution of trienol 5 (3.32 g, 26.8 mmol) and 1-pentanol (3.47 mL, 32.0 mmol) in DCM (500 mL) at 0 °C. The reaction mixture was allowed to warm to rt, and after 48 h, saturated NaHCO₃ (100 mL) was added. The resulting mixture was passed through a pad of silica, Na₂SO₄ and Celite® and concentrated to give 7 (3.6 g, 76 %).

MeMgBr mediated DA of trienol 5 with methyl acrylate (MAC):
MeMgBr (3.0 M in ether; 65 µL, 0.19 mmol) and MAC (100 µL, 1.1 mmol) were added sequentially to a stirred solution of trienol 5 (24 mg, 0.19 mmol) and 1-pentanol (21 µL, 0.19 mmol) in DCM (5 mL) at 0 °C. The reaction mixture was allowed to warm to rt, and after 24 h, saturated NaHCO₃ (1 mL) was added. The resulting mixture was passed through a column of Na₂SO₄ and Celite®, concentrated and purified by PTLC (40 % ethyl acetate in hexane) to give 7 (29 mg, 85 %).

Et₂AlCl mediated DA of trienol 5 with methyl acrylate (MAC):
Et₂AlCl (1 M in hexanes; 194 µL, 0.19 mmol) and MAC (0.3 mL, 3.3 mmol) were added sequentially to a stirred solution of trienol 5 (24 mg, 0.19 mmol) in DCM (5 mL) at 0 °C. The reaction mixture was allowed to warm to rt, and after 24 h, saturated NaHCO₃ (1 mL) was added. The resulting mixture was passed through a column of Na₂SO₄ and Celite®, concentrated and purified by PTLC (40 % ethyl acetate in hexane) to give 7 (25 mg, 74 %).

Me₃Al / S-BINOL mediated DA of trienol 5 with methyl acrylate (MAC)
Me₃Al (2 M in hexane; 194 µL, 0.19 mmol) was added to a stirred solution of S-BINOL (60 mg, 0.21 mmol) and trienol 5 (24 mg, 0.19 mmol) in DCM (5 mL) at 0 °C. After 5 min, MAC (0.3 mL, 3.3 mmol) was added. The reaction mixture was allowed to warm to rt, and after 48 h was quenched by addition of saturated NaHCO₃ (ca. 1 mL). The resulting mixture was passed through a short column of Na₂SO₄ and Celite® and the combined eluant and washings were
concentrated and purified by PTLC (40% ethyl acetate in hexane) to give the 7 (27 mg, 80 %, 75% ee by HPLC).4

IR νmax 1716, 1402, 1078; 1H NMR (400 MHz, CDCl3) δ 6.24 (1H, dd, J = 11, 17.5 Hz), 5.86 (1H, t, J = 4 Hz), 5.07 (1H, d, J = 17.5 Hz), 5.00 (1H, d, J = 11 Hz), 4.39 (1H, ddd, J= 3, 5, 11 Hz, CH2O), 4.32 (1H, ddd, J = 3, 11, 11 Hz, CH2O), 2.95-2.86 (1H, m), 2.81 (1H, ddd, J = 4, 5 11 Hz), 2.29-2.20 (2H, m), 2.14 (1H, dddd, J = 3.5, 3.5, 3.5, 14.5 Hz), 2.01-1.77 (3H, m); 13C NMR (100 MHz, CDCl3) δ 174.4 (s, C=O), 138.2 (CH), 136.4 (C), 130.5 (CH), 111.4 (CH2), 61.2 (t, CH2O), 40.5 (CH), 31.8 (CH), 26.5 (CH2), 25.0 (CH2), 23.6 (CH2); MS (EI) m/z (relative intensity): 178 ([M]+, 16), 150 (15), 105 (10), 91 (26), 79 (10); HRMS m/z calcd. for C11H14O2: 178.0994; found: 178.0990.

(4aR,8S,8aS)-rel-methyl 1-oxo-5-vinyl-3,4,4a,7,8,8a-hexahydro-1H-isochromene-8-carboxylate (8)

MeMgBr mediated DA of trienol 5 with dimethyl fumarate:

MeMgBr (3.0 M in ether; 65 µL, 0.19 mmol) and dimethyl fumarate (55 mg, 0.38 mmol) were added sequentially to a stirred solution of trienol 5 (24 mg, 0.19 mmol) and 1-pentanol (21 µL, 0.19 mmol) in DCM (5 mL) at 0 °C. The reaction mixture was allowed to warm to rt, and after 24 h, saturated NaHCO3 (1 mL) was added. The resulting mixture was passed through a column of Na2SO4 and Celite®, concentrated and purified by PTLC (40 % ethyl acetate in hexane) to give 8 (36 mg, 80 %).

IR νmax 1728, 1724, 1433, 1271, 1166; 1H NMR (400 MHz, CDCl3) δ 6.20 (1H, dd, J = 11, 17.5 Hz), 5.88 (1H, t, J = 4 Hz), 5.08 (1H, d, J = 17.5 Hz), 5.03 (1H, d, J = 11 Hz), 4.33-4.23 (2H, m, CH2O), 3.68 (3H, s, OMe), 3.37-3.28 (2H, m), 3.19 (1H, ddd, J = 7.5, 7.5, 7.5 Hz), 2.65(1H, ddd, J = 4.5, 4.5, 18 Hz), 2.49-2.40 (1H, m), 2.31-2.21 (1H, m), 1.89-1.76 (1H, m); 13C NMR (100 MHz, CDCl3) δ 174.0 (s, C=O), 172.6 (s, C=O), 137.4 (CH), 136.8 (C), 128.1 (CH),

4 EE was determined using a Chiralcel OJ-H column (2% isopropanol in hexanes)
113.0 (CH₂), 67.1 (t, CH₂O), 52.6 (CH₃, OMe), 41.6 (CH), 39.4 (CH), 30.1 (CH), 27.9 (CH₂), 25.4 (CH₂); **MS (El)** *m/z* (relative intensity): 236 ([M]⁺, 24), 205 (13), 176 (95), 148 (19), 131 (22), 104 (100); **HRMS** *m/z* calcd. for C₁₃H₁₆O₄: 236.1049; found: 236.1055.

(4αR,8R,8aS)-rel-1-oxo-5-vinyl-3,4,4a,7,8,8a-hexahydro-1H-isochromene-8-carboxylic acid (9)

```
\begin{center}
\includegraphics[width=0.5\textwidth]{structure.png}
\end{center}
```

Thermal DA of trienol 5 with maleic anhydride:

Maleic anhydride (50 mg, 0.51 mmol) was added to a solution of the trienol 5 (32 mg, 0.26 mmol) in DCM (5 mL). After 24 h, the reaction mixture was concentrated. Purification by PTLC (50% ethyl acetate in hexane) gave solely adduct 9 (11 mg, 19%).

IR *ν*max 2918, 1733, 1697, 1392, 1251; **¹H NMR** (400 MHz, CDCl₃) δ 6.24 (1H, dd, *J* = 11, 17.5 Hz), 5.94-5.89 (1H, m), 5.10 (1H, d, *J* = 17.5 Hz), 5.06 (1H, d, *J* = 11 Hz), 4.28 (1H, ddd, *J* = 3.5, 8.5, 11.5 Hz), 4.18 (1H, dddd, *J* = 4, 7, 11 Hz), 3.62-3.50 (1H, m), 3.26 (1H, dddd, *J* = 3.5, 7.5, 11.5, 11.5 Hz); **¹³C NMR** (100 MHz, CDCl₃) δ 177.6 (s, C=O), 172.2 (s, C=O), 131.5 (C), 137.2 (CH), 128.8 (CH), 113.6 (CH₂), 66.2 (t, CH₂O), 41.3 (CH), 40.1 (CH), 33.1 (CH), 28.6 (CH₂), 24.0 (CH₂); **MS (EI)** *m/z*; **HRMS** calculated for C₁₂H₁₄O₄: 222.0892; found: 222.0892.
(3aR,4S,7aS)-rel-4-(2-hydroxyethyl)-2-methyl-5-vinyl-3a,4,7,7a-tetrahydro-1H-isooindole-1,3(2H)-dione (10) and (11)

MeMgBr mediated DA of trienol 5 with N-methyl maleimide:

MeMgBr (3.0 M in ether; 65 µL, 0.19 mmol) and N-methyl maleimide (19 mg, 0.17 mmol) were added sequentially to a stirred solution of trienol 5 (24 mg, 0.19 mmol) and 1-pentanol (21 µL, 0.19 mmol) in DCM (5 mL) at 0 °C. The reaction mixture was allowed to warm to rt, and after 24 h, saturated NaHCO₃ (1 mL) was added. The resulting mixture was passed through a column of Na₂SO₄ and Celite®, concentrated and purified by PTLC (100% EtOAc) to give 10 (24 mg, 61 %) and 11 (10 mg, 17 %).

Thermal DA of trienol 5 with N-methyl maleimide:

N-methyl maleimide (17 mg, 0.15 mmol) was added to a stirred solution of trienol 5 (24 mg, 0.19 mmol) in DCM (5 mL). After 24 h, the reaction mixture was concentrated and purified by PTLC (100% EtOAc) to give adducts 10 (6 mg, 17%) and 11 (19 mg, 36%).

Data for 9: IR νmax 3433, 2945, 1689, 1435, 1277, 1136; ¹H NMR (400 MHz, CDCl₃) δ 6.40 (1H, dd, J = 11, 17.5 Hz), 5.96 (1H, dd, J = 3.5, 7 Hz), 5.36 (1H, d, J = 17.5 Hz), 5.05 (1H, d, J = 10.5 Hz), 3.61-3.46 (2H, m, CH₂O), 3.36 (1H, ddd, J = 5, 5, 10.5 Hz), 3.11-3.02 (2H, m), 3.01 (3H, s, OMe), 2.78-2.67 (1H, m), 2.49-2.37 (1H, m), 1.66-1.57 (1H, m), 1.48-1.35 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 180.4 (s, C=O), 179.0 (s, C=O), 142.4 (C), 137.8 (CH), 127.6 (CH), 112.8 (CH₂), 61.1 (CH₂), 44.6 (CH), 39.1 (CH), 32.0 (CH₂), 31.1 (CH), 25.0 (CH₃, NMe), 22.5 (CH₂); MS (El) m/z (relative intensity): 235 ([M]+, 9), 217 (19), 191 (100), 132 (21), 106 (70), 91 (35); HRMS m/z calcd. for C₁₃H₁₇NO₃: 235.1208; found: 235.1192.

Data for 10: IR νmax 3493, 2940, 1700, 1683, 1433, 1381, 904; ¹H NMR (400 MHz, CDCl₃) δ 5.51-5.54 (1H, m), 3.89 (1H, ddd, J = 5, 7, 11.5 Hz, CH₂O), 3.77 (1H, ddd, J = 5, 7, 11 Hz, 5 Yields based on amount of N-methyl maleimide used.
CH2O), 3.37 (1H, dd, J = 6, 9.5 Hz), 3.36 (1H, ddd, J = 2, 5.5, 9.5 Hz), 3.10-3.00 (2H, m), 2.90 (3H, s, NMe), 2.88 (3H, s, NMe), 2.84-2.62 (3H, m), 2.37 (1H, ddd, J = 2, 4.5, 14 Hz), 2.12-1.94 (3H, m), 1.94-1.84 (1H, m); 13C NMR (100 MHz, CDCl3) δ 180.2 (s, C=O), 179.8 (s, C=O), 178.8 (s, C=O), 178.1 (s, C=O), 141.0 (C), 120.5 (CH), 61.1 (CH2), 43.5 (CH), 41.3 (CH), 40.3 (CH), 40.1 (CH), 35.2 (CH), 34.3 (CH), 30.3 (CH2), 25.2 (CH3, NMe), 25.11 (CH2), 25.08 (CH3, NMe), 23.3 (CH2); MS (El) m/z (relative intensity): 346 ([M]+, 4), 328 (100), 316 (20), 242 (15), 112 (57), 91 (19); HRMS m/z calcd. for C18H22N2O4: 346.1529; found: 346.1544.

(3aS,3bR,5aS,9aS,11aR)-rel-2-methyl-3b,4,5,5a,9,9a,11,11a-octahydroisochromeno[6,5-e]isoindole-1,3,6(2H,3aH,8H)-trione (12a) and (3aR,3bS,5aS,9aS,11aS)-rel-2-methyl-3b,4,5,5a,9,9a,11,11a-octahydroisochromeno[6,5-e]isoindole-1,3,6(2H,3aH,8H)-trione (12b)

Thermal DA of lactone 7 with N-methyl maleimide:

N-methyl maleimide (17 mg, 0.15 mmol) was added to a solution of lactone 7 (25 mg, 0.14 mmol) in DCM (1 mL). After 24 h, the reaction mixture was concentrated and fractionated by PTLC (100% EtOAc) to give adducts 12a (33 mg, 81%) and 12b (5 mg, 12%).

Data for 12a: IR νmax 2941, 1730, 1693, 1436, 1286, 1076; 1H NMR (400 MHz, CDCl3) δ 5.62-5.53 (1H, m), 4.36 (1H, ddd, J = 4, 4, 11 Hz, CH2O), 4.23 (1H, ddd, J = 2.5, 11, 11 Hz, CH2O), 3.16-3.05 (2H, m), 2.99-2.85 (2H, m), 2.90 (3H, s, NMe), 2.75 (1H, dd, J = 7, 15 Hz), 2.37-2.07 (4H, m), 2.05-1.97 (1H, m), 1.93-1.81 (2H, m), 1.78-1.66 (1H, m); 13C NMR (100 MHz, CDCl3) δ 180.1 (s, C=O), 178.5 (s, C=O), 174.9 (s, C=O), 142.4, 120.2, 66.3 (t, CH2O), 44.9, 40.5, 39.2, 38.0, 33.9, 26.2, 25.1, 24.9, 24.6, 23.0; MS (El) m/z 289 ([M]+, 40), 216 (20), 178 (20), 157 (17), 57 (100); HRMS calculated for C18H19NO4: 289.1314; found: 289.1302.

Data for 12b: IR νmax 2939, 1726, 1693, 1437, 1384, 1286; 1H NMR (400 MHz, CDCl3) δ 5.73-5.66 (1H, m), 4.29 (1H, ddd, J = 4, 5, 11.5 Hz), 4.21 (1H, ddd, J = 4, 11, 11 Hz), 3.13-3.02
(2H, m), 3.01-2.85 (2H, m), 2.93 (3H, s), 2.71 (1H, ddd, $J = 2, 6, 15.5$ Hz), 2.49-2.40 (1H, m), 2.39-2.31 (1H, m), 2.30-2.18 (1H, m), 2.11-1.99 (1H, m), 1.94-1.80 (2H, m), 1.80-1.70 (1H, m), 1.65 (1H, dddd, $J = 4, 6, 11.5, 14$ Hz); 13C NMR (75 MHz, CDCl$_3$) δ 180.0 (C), 178.9 (C), 173.9 (C), 141.3, 121.8, 67.1, 43.8, 40.1, 39.7, 37.2, 36.9, 29.0, 26.0, 25.0, 24.0, 23.9; MS (EI) m/z 289 ([M]+, 12), 217 (14), 179 (11), 178 (100), 150 (24), 112 (23), 91 (18); HRMS calculated for C$_{16}$H$_{19}$NO$_4$: 289.1314; found: 289.1292.